enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Davidson correction - Wikipedia

    en.wikipedia.org/wiki/Davidson_correction

    Davidson correction. The Davidson correction is an energy correction often applied in calculations using the method of truncated configuration interaction, which is one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry. It was introduced by Ernest R. Davidson.

  3. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  4. Esotropia - Wikipedia

    en.wikipedia.org/wiki/Esotropia

    Esotropia is a form of strabismus in which one or both eyes turn inward. The condition can be constantly present, or occur intermittently, and can give the affected individual a "cross-eyed" appearance. [1] It is the opposite of exotropia and usually involves more severe axis deviation than esophoria. Esotropia is sometimes erroneously called ...

  5. Exophoria - Wikipedia

    en.wikipedia.org/wiki/Exophoria

    Exophoria. Exophoria is a form of heterophoria in which there is a tendency of the eyes to deviate outward. [1] During examination, when the eyes are dissociated, the visual axes will appear to diverge away from one another. [2] The axis deviation in exophoria is usually mild compared with that of exotropia .

  6. Exotropia - Wikipedia

    en.wikipedia.org/wiki/Exotropia

    Specialty. Ophthalmology. Exotropia is a form of strabismus where the eyes are deviated outward. It is the opposite of esotropia and usually involves more severe axis deviation than exophoria. People with exotropia often experience crossed diplopia. Intermittent exotropia is a fairly common condition. "Sensory exotropia" occurs in the presence ...

  7. Anisometropia - Wikipedia

    en.wikipedia.org/wiki/Anisometropia

    Amblyopia. Anisometropia is a condition in which a person's eyes have substantially differing refractive power. [1] Generally, a difference in power of one diopter (1D) is the threshold for diagnosis of the condition . [2] [3] Patients may have up to 3D of anisometropia before the condition becomes clinically significant due to headache, eye ...

  8. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    Relativistic corrections (Dirac) to the energy levels of a hydrogen atom from Bohr's model. The fine structure correction predicts that the Lyman-alpha line (emitted in a transition from n = 2 to n = 1) must split into a doublet. The total effect can also be obtained by using the Dirac equation. In this case, the electron is treated as non ...

  9. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  10. Epidote - Wikipedia

    en.wikipedia.org/wiki/Epidote

    Epidote is an abundant rock-forming mineral, but one of secondary origin. It occurs in marble and schistose rocks of metamorphic origin. It is also a product of hydrothermal alteration of various minerals ( feldspars, micas, pyroxenes, amphiboles, garnets, and others) composing igneous rocks. A rock composed of quartz and epidote is known as ...

  11. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}