enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    In statistics, Bessel's correction is the use of n − 1 instead of n in the formula for the sample variance and sample standard deviation, where n is the number of observations in a sample. This method corrects the bias in the estimation of the population variance.

  3. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Where is the sample size, = / is the fraction of the sample from the population, () is the (squared) finite population correction (FPC), is the unbiassed sample variance, and (¯) is some estimator of the variance of the mean under the sampling design. The issue with the above formula is that it is extremely rare to be able to directly estimate ...

  4. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    This depends on the sample size n, and is given as follows: c 4 ( n ) = 2 n − 1 Γ ( n 2 ) Γ ( n − 1 2 ) = 1 − 1 4 n − 7 32 n 2 − 19 128 n 3 + O ( n − 4 ) {\displaystyle c_{4}(n)={\sqrt {\frac {2}{n-1}}}{\frac {\Gamma \left({\frac {n}{2}}\right)}{\Gamma \left({\frac {n-1}{2}}\right)}}=1-{\frac {1}{4n}}-{\frac {7}{32n^{2}}}-{\frac ...

  5. Welch's t-test - Wikipedia

    en.wikipedia.org/wiki/Welch's_t-test

    Welch's t-test defines the statistic t by the following formula: t = Δ X ¯ s Δ X ¯ = X ¯ 1 − X ¯ 2 s X ¯ 1 2 + s X ¯ 2 2 {\displaystyle t={\frac {\Delta {\overline {X}}}{s_{\Delta {\bar {X}}}}}={\frac {{\overline {X}}_{1}-{\overline {X}}_{2}}{\sqrt {{s_{{\bar {X}}_{1}}^{2}}+{s_{{\bar {X}}_{2}}^{2}}}}}\,}

  6. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    To determine the sample size n required for a confidence interval of width W, with W/2 as the margin of error on each side of the sample mean, the equation Z σ n = W / 2 {\displaystyle {\frac {Z\sigma }{\sqrt {n}}}=W/2} can be solved.

  7. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes. Moreover, this formula works for positive and negative ρ alike. See also unbiased estimation of standard deviation for more discussion.

  8. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    For example, in the R statistical computing environment, this value can be obtained as fisher.test(rbind(c(1,9),c(11,3)), alternative="less")$p.value, or in Python, using scipy.stats.fisher_exact(table=[[1,9],[11,3]], alternative="less") (where one receives both the prior odds ratio and the p -value).

  9. Akaike information criterion - Wikipedia

    en.wikipedia.org/wiki/Akaike_information_criterion

    To address such potential overfitting, AICc was developed: AICc is AIC with a correction for small sample sizes. The formula for AICc depends upon the statistical model. Assuming that the model is univariate, is linear in its parameters, and has normally-distributed residuals (conditional upon regressors), then the formula for AICc is as follows.

  10. Mauchly's sphericity test - Wikipedia

    en.wikipedia.org/wiki/Mauchly's_sphericity_test

    While Mauchly's test is one of the most commonly used to evaluate sphericity, the test fails to detect departures from sphericity in small samples and over-detects departures from sphericity in large samples. Consequently, the sample size has an influence on the interpretation of the results.

  11. Tukey's range test - Wikipedia

    en.wikipedia.org/wiki/Tukey's_range_test

    The formula for Tukey's test is = | | , where Y A and Y B are the two means being compared, and SE is the standard error for the sum of the means. The value q s is the sample's test statistic.