enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  3. Anisometropia - Wikipedia

    en.wikipedia.org/wiki/Anisometropia

    Amblyopia. Anisometropia is a condition in which a person's eyes have substantially differing refractive power. [1] Generally, a difference in power of one diopter (1D) is the threshold for diagnosis of the condition . [2] [3] Patients may have up to 3D of anisometropia before the condition becomes clinically significant due to headache, eye ...

  4. Exotropia - Wikipedia

    en.wikipedia.org/wiki/Exotropia

    Specialty. Ophthalmology. Exotropia is a form of strabismus where the eyes are deviated outward. It is the opposite of esotropia and usually involves more severe axis deviation than exophoria. People with exotropia often experience crossed diplopia. Intermittent exotropia is a fairly common condition. "Sensory exotropia" occurs in the presence ...

  5. Maddox wing - Wikipedia

    en.wikipedia.org/wiki/Maddox_Wing

    Maddox wing. The Maddox Wing is an instrument utilized by ophthalmologists, orthoptists and optometrists in the measurement of strabismus (misalignment of the eyes; commonly referred to as a squint or lazy eye by the lay person). It is a quantitative and subjective method of measuring the size of a strabismic deviation by dissociation of the ...

  6. Strabismus - Wikipedia

    en.wikipedia.org/wiki/Strabismus

    Incomitant strabismus cannot be fully corrected by prism glasses, because the eyes would require different degrees of prismatic correction dependent on the direction of the gaze. Incomitant strabismus of the eso- or exo-type are classified as "alphabet patterns": they are denoted as A- or V- or more rarely λ -, Y- or X-pattern depending on the ...

  7. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  8. Horror fusionis - Wikipedia

    en.wikipedia.org/wiki/Horror_fusionis

    Ophthalmology. In ophthalmology, horror fusionis is a condition in which the eyes have an unsteady deviation, with the extraocular muscles performing spasm-like movements that continuously shift the eyes away from the position in which they would be directed to the same point in space, giving rise to diplopia. Even when the double vision images ...

  9. Diplopia - Wikipedia

    en.wikipedia.org/wiki/Diplopia

    Specialty. Neurology, ophthalmology. Diplopia is the simultaneous perception of two images of a single object that may be displaced horizontally or vertically in relation to each other. [1] Also called double vision, it is a loss of visual focus under regular conditions, and is often voluntary.

  10. Esotropia - Wikipedia

    en.wikipedia.org/wiki/Esotropia

    Esotropia is a form of strabismus in which one or both eyes turn inward. The condition can be constantly present, or occur intermittently, and can give the affected individual a "cross-eyed" appearance. [1] It is the opposite of exotropia and usually involves more severe axis deviation than esophoria. Esotropia is sometimes erroneously called ...

  11. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}