enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Translation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Translation_operator...

    Translation operator (quantum mechanics) In quantum mechanics, a translation operator is defined as an operator which shifts particles and fields by a certain amount in a certain direction. It is a special case of the shift operator from functional analysis. More specifically, for any displacement vector , there is a corresponding translation ...

  3. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak ...

  4. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    Operator (physics) In physics, an operator is a function over a space of physical states onto another space of physical states. The simplest example of the utility of operators is the study of symmetry (which makes the concept of a group useful in this context). Because of this, they are useful tools in classical mechanics.

  5. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination. of the two state vectors where a and b are any complex numbers. [13] : 25 Moreover, the sum can be extended for any number of state vectors.

  6. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  7. Symmetry in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_quantum_mechanics

    e. Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics.

  8. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    Fine structure. Interference fringes, showing fine structure (splitting) of a cooled deuterium source, viewed through a Fabry–Pérot interferometer. In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation.

  9. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a ...

  10. Bethe–Salpeter equation - Wikipedia

    en.wikipedia.org/wiki/Bethe–Salpeter_equation

    The equation was first published in 1950 at the end of a paper by Yoichiro Nambu, but without derivation. A graphical representation of the Bethe–Salpeter equation, showing its recursive definition. Due to its generality and its application in many branches of theoretical physics, the Bethe–Salpeter equation appears in many different forms.

  11. Weak localization - Wikipedia

    en.wikipedia.org/wiki/Weak_localization

    Weak localization is a physical effect which occurs in disordered electronic systems at very low temperatures. The effect manifests itself as a positive correction to the resistivity of a metal or semiconductor. [1] The name emphasizes the fact that weak localization is a precursor of Anderson localization, which occurs at strong disorder.