enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  3. Square antiprism - Wikipedia

    en.wikipedia.org/wiki/Square_antiprism

    Square antiprism. In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an anticube. [1] If all its faces are regular, it is a semiregular polyhedron or uniform polyhedron .

  4. Square antiprismatic molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Square_antiprismatic...

    μ (Polarity) 0. In chemistry, the square antiprismatic molecular geometry describes the shape of compounds where eight atoms, groups of atoms, or ligands are arranged around a central atom, defining the vertices of a square antiprism. [1] This shape has D 4d symmetry and is one of the three common shapes for octacoordinate transition metal ...

  5. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    Relativistic corrections (Dirac) to the energy levels of a hydrogen atom from Bohr's model. The fine structure correction predicts that the Lyman-alpha line (emitted in a transition from n = 2 to n = 1) must split into a doublet. The total effect can also be obtained by using the Dirac equation. In this case, the electron is treated as non ...

  6. Born–Oppenheimer approximation - Wikipedia

    en.wikipedia.org/wiki/Born–Oppenheimer...

    In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons.

  7. Davies equation - Wikipedia

    en.wikipedia.org/wiki/Davies_equation

    The Davies equation is an empirical extension of Debye–Hückel theory which can be used to calculate activity coefficients of electrolyte solutions at relatively high concentrations at 25 °C. The equation, originally published in 1938, [1] was refined by fitting to experimental data. The final form of the equation gives the mean molal ...

  8. Specific rotation - Wikipedia

    en.wikipedia.org/wiki/Specific_rotation

    Specific rotation. In chemistry, specific rotation ( [α]) is a property of a chiral chemical compound. [1] : 244 It is defined as the change in orientation of monochromatic plane-polarized light, per unit distance–concentration product, as the light passes through a sample of a compound in solution. [2] : 2–65 Compounds which rotate the ...

  9. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    Eyring equation. The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring, Meredith Gwynne Evans and Michael Polanyi.

  10. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld. Sommerfeld argued that if electronic orbits ...

  11. Marcus theory - Wikipedia

    en.wikipedia.org/wiki/Marcus_theory

    Marcus theory is used to describe a number of important processes in chemistry and biology, including photosynthesis, corrosion, certain types of chemiluminescence, charge separation in some types of solar cells and more. Besides the inner and outer sphere applications, Marcus theory has been extended to address heterogeneous electron transfer .