enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  3. Faxén's law - Wikipedia

    en.wikipedia.org/wiki/Faxén's_law

    Faxen's first law was introduced in 1922 by Swedish physicist Hilding Faxén, who at the time was active at Uppsala University, and is given by [1] [2] where. is the force exerted by the fluid on the sphere. is the Newtonian viscosity of the solvent in which the sphere is placed. is the sphere's radius. is the (translational) velocity of the ...

  4. Vertex distance - Wikipedia

    en.wikipedia.org/wiki/Vertex_distance

    The formula for vertex correction is = (), where F c is the power corrected for vertex distance, F is the original lens power, and x is the change in vertex distance in meters.

  5. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  6. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.

  7. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    The force of gravity and the normal force. The resultant force acts as the required centripetal force. The mathematical derivation for the Eötvös effect for motion along the Equator explains the factor 2 in the first term of the Eötvös correction formula. What remains to be explained is the cosine factor.

  8. K correction - Wikipedia

    en.wikipedia.org/wiki/K_correction

    K correction. K correction converts measurements of astronomical objects into their respective rest frames. The correction acts on that object's observed magnitude (or equivalently, its flux ). Because astronomical observations often measure through a single filter or bandpass, observers only measure a fraction of the total spectrum, redshifted ...

  9. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free-air correction is the amount that must be added to a measurement at height to correct it to the reference level: δ g F = 2 g R × h {\displaystyle \delta g_{F}={\frac {2g}{R}}\times h} Here we have assumed that measurements are made relatively close to the surface so that R does not vary significantly.

  10. Weak localization - Wikipedia

    en.wikipedia.org/wiki/Weak_localization

    Weak localization. Weak localization is a physical effect which occurs in disordered electronic systems at very low temperatures. The effect manifests itself as a positive correction to the resistivity of a metal or semiconductor. [1] The name emphasizes the fact that weak localization is a precursor of Anderson localization, which occurs at ...

  11. Clairaut's equation - Wikipedia

    en.wikipedia.org/wiki/Clairaut's_equation

    t. e. In mathematical analysis, Clairaut's equation (or the Clairaut equation) is a differential equation of the form. where is continuously differentiable. It is a particular case of the Lagrange differential equation. It is named after the French mathematician Alexis Clairaut, who introduced it in 1734. [1]