enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    Assuming also that the degeneracy is completely lifted to the first order, i.e. that () if , we have the following formulae for the energy correction to the second order in E n k = E n 0 + λ V n k , n k + λ 2 ∑ m ≠ n | V m , n k | 2 E n ( 0 ) − E m ( 0 ) + O ( λ 3 ) , {\displaystyle E_{nk}=E_{n}^{0}+\lambda V_{nk,nk}+\lambda ^{2}\sum ...

  3. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Planck–Einstein equation and de Broglie wavelength relations. P = ( E/c, p) is the four-momentum, K = (ω/ c, k) is the four-wavevector, E = energy of particle. ω = 2π f is the angular frequency and frequency of the particle. ħ = h /2π are the Planck constants. c = speed of light. Schrödinger equation.

  5. Prism (optics) - Wikipedia

    en.wikipedia.org/wiki/Prism_(optics)

    Prism (optics) An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides.

  6. Dioptre - Wikipedia

    en.wikipedia.org/wiki/Dioptre

    A dioptre ( British spelling) or diopter ( American spelling ), symbol dpt, is a unit of measurement with dimension of reciprocal length, equivalent to one reciprocal metre, 1 dpt = 1 m−1. It is normally used to express the optical power of a lens or curved mirror, which is a physical quantity equal to the reciprocal of the focal length ...

  7. Poynting's theorem - Wikipedia

    en.wikipedia.org/wiki/Poynting's_theorem

    Definition. Poynting's theorem states that the rate of energy transfer per unit volume from a region of space equals the rate of work done on the charge distribution in the region, plus the energy flux leaving that region. Mathematically: where: is the rate of change of the energy density in the volume.

  8. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination. of the two state vectors where a and b are any complex numbers. [13] : 25 Moreover, the sum can be extended for any number of state vectors.

  9. Gibbs paradox - Wikipedia

    en.wikipedia.org/wiki/Gibbs_paradox

    Removing or reinserting the wall is reversible, but the entropy increases when the barrier is removed by the amount. which is in contradiction to thermodynamics if you re-insert the barrier. This is the Gibbs paradox. The paradox is resolved by postulating that the gas particles are in fact indistinguishable.

  10. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    Dispersion (optics) In a dispersive prism, material dispersion (a wavelength -dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. In optics and in wave propagation in general, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency; [1 ...

  11. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld. Sommerfeld argued that if electronic orbits ...