enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hypertropia - Wikipedia

    en.wikipedia.org/wiki/Hypertropia

    Hypertropia is a condition of misalignment of the eyes ( strabismus ), whereby the visual axis of one eye is higher than the fellow fixating eye. Hypotropia is the similar condition, focus being on the eye with the visual axis lower than the fellow fixating eye. Dissociated vertical deviation is a special type of hypertropia leading to slow ...

  3. Volume correction factor - Wikipedia

    en.wikipedia.org/wiki/Volume_Correction_Factor

    In thermodynamics, the Volume Correction Factor (VCF), also known as Correction for the effect of Temperature on Liquid (CTL), is a standardized computed factor used to correct for the thermal expansion of fluids, primarily, liquid hydrocarbons at various temperatures and densities. [1] [2] It is typically a number between 0 and 2, rounded to ...

  4. Pressure prism - Wikipedia

    en.wikipedia.org/wiki/Pressure_prism

    Pressure prism. A pressure prism is a way of visually describing the variation of hydrostatic pressure within a volume of fluid. When variables of fluid density, depth, gravity, and other forces such as atmospheric pressure are charted, the resulting figure somewhat resembles a prism .

  5. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  6. PISO algorithm - Wikipedia

    en.wikipedia.org/wiki/PISO_algorithm

    PISO algorithm ( Pressure-Implicit with Splitting of Operators) was proposed by Issa in 1986 without iterations and with large time steps and a lesser computing effort. It is an extension of the SIMPLE algorithm used in computational fluid dynamics to solve the Navier-Stokes equations. PISO is a pressure-velocity calculation procedure for the ...

  7. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College, London in the early 1970s. Since then it has been extensively used by many researchers to solve different kinds of fluid flow and heat transfer problems.

  8. Center of pressure (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/Center_of_pressure_(fluid...

    Center of pressure (fluid mechanics) In fluid mechanics, the center of pressure is the point on a body where a single force acting at that point can represent the total effect of the pressure field acting on the body. The total force vector acting at the center of pressure is the surface integral of the pressure vector field across the surface ...

  9. Finite volume method for unsteady flow - Wikipedia

    en.wikipedia.org/wiki/Finite_volume_method_for...

    The first term of the equation reflects the unsteadiness of the flow and is absent in case of steady flows. The finite volume integration of the governing equation is carried out over a control volume and also over a finite time step ∆t. The control volume integration of the steady part of the equation is similar to the steady state governing ...

  10. Projection method (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Projection_method_(fluid...

    In fluid dynamics, The projection method is an effective means of numerically solving time-dependent incompressible fluid-flow problems. It was originally introduced by Alexandre Chorin in 1967 [1] [2] as an efficient means of solving the incompressible Navier-Stokes equations. The key advantage of the projection method is that the computations ...

  11. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    The volume rate of flow of liquid through a source or sink (with the flow through a sink given a negative sign) is equal to the divergence of the velocity field at the pipe mouth, so adding up (integrating) the divergence of the liquid throughout the volume enclosed by S equals the volume rate of flux through S. This is the divergence theorem.