enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    In statistics, Bessel's correction is the use of n − 1 instead of n in the formula for the sample variance and sample standard deviation, where n is the number of observations in a sample. This method corrects the bias in the estimation of the population variance.

  3. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5): = /

  4. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    This also influences the sample size (overall, per stratum, per cluster, etc.). When planning the sample size, work may be done to correct the design effect so as to separate the interviewer effect (measurement error) from the effects of the sampling design on the sampling variance.

  5. Bonferroni correction - Wikipedia

    en.wikipedia.org/wiki/Bonferroni_correction

    In statistics, the Bonferroni correction is a method to counteract the multiple comparisons problem.

  6. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    For example, in the R statistical computing environment, this value can be obtained as fisher.test(rbind(c(1,9),c(11,3)), alternative="less")$p.value, or in Python, using scipy.stats.fisher_exact(table=[[1,9],[11,3]], alternative="less") (where one receives both the prior odds ratio and the p -value).

  7. Welch's t-test - Wikipedia

    en.wikipedia.org/wiki/Welch's_t-test

    where ¯ and ¯ are the sample mean and its standard error, with denoting the corrected sample standard deviation, and sample size.

  8. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    The use of n − 1 instead of n in the formula for the sample variance is known as Bessel's correction, which corrects the bias in the estimation of the population variance, and some, but not all of the bias in the estimation of the population standard deviation.

  9. Yates's correction for continuity - Wikipedia

    en.wikipedia.org/wiki/Yates's_correction_for...

    To reduce the error in approximation, Frank Yates, an English statistician, suggested a correction for continuity that adjusts the formula for Pearson's chi-squared test by subtracting 0.5 from the difference between each observed value and its expected value in a 2 × 2 contingency table.

  10. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Using Bessel's correction to calculate an unbiased estimate of the population variance from a finite sample of n observations, the formula is: s 2 = ( i = 1 n x i 2 n − ( ∑ i = 1 n x i n ) 2 ) ⋅ n n − 1 . {\displaystyle s^{2}=\left({\frac {\sum _{i=1}^{n}x_{i}^{2}}{n}}-\left({\frac {\sum _{i=1}^{n}x_{i}}{n}}\right)^{2}\right)\cdot ...

  11. Tukey's range test - Wikipedia

    en.wikipedia.org/wiki/Tukey's_range_test

    The formula for Tukey's test is = | | , where Y A and Y B are the two means being compared, and SE is the standard error for the sum of the means. The value q s is the sample's test statistic.