enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Worth 4 dot test - Wikipedia

    en.wikipedia.org/wiki/Worth_4_dot_test

    assess degree of binocular vision. The Worth Four Light Test, also known as the Worth's four dot test or W4LT, is a clinical test mainly used for assessing a patient's degree of binocular vision and binocular single vision. Binocular vision involves an image being projected by each eye simultaneously into an area in space and being fused into a ...

  3. Bolometric correction - Wikipedia

    en.wikipedia.org/wiki/Bolometric_correction

    Bolometric correction. In astronomy, the bolometric correction is the correction made to the absolute magnitude of an object in order to convert its visible magnitude to its bolometric magnitude. It is large for stars which radiate most of their energy outside of the visible range. A uniform scale for the correction has not yet been standardized.

  4. Vertex distance - Wikipedia

    en.wikipedia.org/wiki/Vertex_distance

    Vertex distance is the distance between the back surface of a corrective lens, i.e. glasses (spectacles) or contact lenses, and the front of the cornea. Increasing or decreasing the vertex distance changes the optical properties of the system, by moving the focal point forward or backward, effectively changing the power of the lens relative to ...

  5. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  6. Greenhouse–Geisser correction - Wikipedia

    en.wikipedia.org/wiki/Greenhouse–Geisser...

    Greenhouse–Geisser correction. The Greenhouse–Geisser correction is a statistical method of adjusting for lack of sphericity in a repeated measures ANOVA. The correction functions as both an estimate of epsilon (sphericity) and a correction for lack of sphericity. The correction was proposed by Samuel Greenhouse and Seymour Geisser in 1959.

  7. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  8. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Since the Fresnel equations were developed for optics, they are usually given for non-magnetic materials. Dividing ( 4) by ( 5 )) yields. For non-magnetic media we can substitute the vacuum permeability μ0 for μ, so that that is, the admittances are simply proportional to the corresponding refractive indices.

  9. Volume correction factor - Wikipedia

    en.wikipedia.org/wiki/Volume_Correction_Factor

    The formula for Volume Correction Factor is commonly defined as: V C F = C T L = exp ⁡ { − α T Δ T [ 1 + 0.8 α T ( Δ T + δ T ) ] } {\displaystyle VCF=C_{TL}=\exp\{-\alpha _{T}\Delta T[1+0.8\alpha _{T}(\Delta T+\delta _{T})]\}}

  10. Šidák correction for t-test - Wikipedia

    en.wikipedia.org/wiki/Šidák_correction_for_t-test

    Šidák correction for t-test. One of the application of Student's t-test is to test the location of one sequence of independent and identically distributed random variables. If we want to test the locations of multiple sequences of such variables, Šidák correction should be applied in order to calibrate the level of the Student's t-test.

  11. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}