enow.com Web Search

  1. Ad

    related to: physics lens calculator

Search results

  1. Results from the WOW.Com Content Network
  2. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    For the purposes of ray tracing, this is equivalent to a series of identical thin lenses of focal length f=R/2, each separated from the next by length d. This construction is known as a lens equivalent duct or lens equivalent waveguide. The RTM of each section of the waveguide is, as above,

  3. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    The numerical aperture with respect to a point P depends on the half-angle, θ1, of the maximum cone of light that can enter or exit the lens and the ambient index of refraction. As a pencil of light goes through a flat plane of glass, its half-angle changes to θ2. Due to Snell's law, the numerical aperture remains the same: NA = n1 sin θ1 ...

  4. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.

  5. Optical resolution - Wikipedia

    en.wikipedia.org/wiki/Optical_resolution

    An imaging system may have many individual components, including one or more lenses, and/or recording and display components. Each of these contributes (given suitable design, and adequate alignment) to the optical resolution of the system; the environment in which the imaging is done often is a further important factor.

  6. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    Focal length. The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a ...

  7. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    Visualization of the sagitta. In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the ...

  8. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    Refractive index. A ray of light being refracted through a glass slab. In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. Refraction of a light ray. The refractive index determines how much the path of light is bent, or ...

  9. Optical power - Wikipedia

    en.wikipedia.org/wiki/Optical_power

    In optics, optical power (also referred to as dioptric power, refractive power, focusing power, or convergence power) is the degree to which a lens, mirror, or other optical system converges or diverges light. It is equal to the reciprocal of the focal length of the device: P = 1/f. [1] High optical power corresponds to short focal length.

  10. Ray tracing (physics) - Wikipedia

    en.wikipedia.org/wiki/Ray_tracing_(physics)

    Not to be confused with Ray casting or Ray tracing (graphics). In physics, ray tracing is a method for calculating the path of waves or particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, wavefronts may bend, change direction, or reflect off ...

  11. Gravitational lensing formalism - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lensing...

    t. e. For broader coverage of this topic, see Gravitational lens. In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to. where G is the gravitational constant, M the mass of the deflecting object and c the speed of light. A naive application of Newtonian gravity can yield exactly half ...