enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  3. Vertex distance - Wikipedia

    en.wikipedia.org/wiki/Vertex_distance

    The formula for vertex correction is = (), where F c is the power corrected for vertex distance, F is the original lens power, and x is the change in vertex distance in meters.

  4. Anisometropia - Wikipedia

    en.wikipedia.org/wiki/Anisometropia

    Amblyopia. Anisometropia is a condition in which a person's eyes have substantially differing refractive power. [1] Generally, a difference in power of one diopter (1D) is the threshold for diagnosis of the condition . [2] [3] Patients may have up to 3D of anisometropia before the condition becomes clinically significant due to headache, eye ...

  5. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  6. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Since the Fresnel equations were developed for optics, they are usually given for non-magnetic materials. Dividing ( 4) by ( 5 )) yields. For non-magnetic media we can substitute the vacuum permeability μ0 for μ, so that that is, the admittances are simply proportional to the corresponding refractive indices.

  7. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz factor. where and v is the relative velocity between two inertial frames . For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame)

  8. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free-air correction is the amount that must be added to a measurement at height to correct it to the reference level: δ g F = 2 g R × h {\displaystyle \delta g_{F}={\frac {2g}{R}}\times h} Here we have assumed that measurements are made relatively close to the surface so that R does not vary significantly.

  9. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    If we take the variance on both sides and use the formula for the variance of a linear combination of variables Var ⁡ ( a X + b Y ) = a 2 Var ⁡ ( X ) + b 2 Var ⁡ ( Y ) + 2 a b Cov ⁡ ( X , Y ) , {\displaystyle \operatorname {Var} (aX+bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)+2ab\operatorname {Cov} (X,Y),}

  10. Diffraction grating - Wikipedia

    en.wikipedia.org/wiki/Diffraction_grating

    A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.

  11. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x . When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the Jacobian determinant of f. It carries important information about the local behavior of f.