enow.com Web Search

  1. Ad

    related to: esophoria prism correction calculator formula physics 1

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Since the Fresnel equations were developed for optics, they are usually given for non-magnetic materials. Dividing ( 4) by ( 5 )) yields. For non-magnetic media we can substitute the vacuum permeability μ0 for μ, so that that is, the admittances are simply proportional to the corresponding refractive indices.

  4. Augustin-Jean Fresnel - Wikipedia

    en.wikipedia.org/wiki/Augustin-Jean_Fresnel

    Augustin-Jean Fresnel [Note 1] (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton 's corpuscular theory, from the late 1830s [3] until the end of the 19th century.

  5. Thomas precession - Wikipedia

    en.wikipedia.org/wiki/Thomas_precession

    Spacetime. In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.

  6. Spherical aberration - Wikipedia

    en.wikipedia.org/wiki/Spherical_aberration

    In optics, spherical aberration ( SA) is a type of aberration found in optical systems that have elements with spherical surfaces. This phenomenon commonly affects lenses and curved mirrors, as these components are often shaped in a spherical manner for ease of manufacturing. Light rays that strike a spherical surface off-centre are refracted ...

  7. Periodic boundary conditions - Wikipedia

    en.wikipedia.org/wiki/Periodic_boundary_conditions

    Unit cell with water molecules, used to simulate flowing water. Periodic boundary conditions (PBCs) are a set of boundary conditions which are often chosen for approximating a large (infinite) system by using a small part called a unit cell. PBCs are often used in computer simulations and mathematical models. The topology of two-dimensional PBC ...

  8. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, [1] [2] laying the basis for the theoretical ...

  9. Fidelity of quantum states - Wikipedia

    en.wikipedia.org/wiki/Fidelity_of_quantum_states

    Fidelity of quantum states. In quantum mechanics, notably in quantum information theory, fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other. The fidelity is not a metric on the space of density matrices, but it can be used to define the Bures ...

  10. Negative refraction - Wikipedia

    en.wikipedia.org/wiki/Negative_refraction

    Negative refraction. Negative refraction is the electromagnetic phenomenon where light rays become refracted at an interface that is opposite to their more commonly observed positive refractive properties. Negative refraction can be obtained by using a metamaterial which has been designed to achieve a negative value for (electric) permittivity ...

  11. K correction - Wikipedia

    en.wikipedia.org/wiki/K_correction

    K correction converts measurements of astronomical objects into their respective rest frames. The correction acts on that object's observed magnitude (or equivalently, its flux ). Because astronomical observations often measure through a single filter or bandpass, observers only measure a fraction of the total spectrum, redshifted into the ...