enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    In the above formula for r s ‍, if we put = ⁡ / ⁡ (Snell's law) and multiply the numerator and denominator by 1 / n 1 sin θ t ‍, we obtain r s = − sin ⁡ ( θ i − θ t ) sin ⁡ ( θ i + θ t ) . {\displaystyle r_{\text{s}}=-{\frac {\sin(\theta _{\text{i}}-\theta _{\text{t}})}{\sin(\theta _{\text{i}}+\theta _{\text{t}})}}.}

  3. Fresnel lens - Wikipedia

    en.wikipedia.org/wiki/Fresnel_lens

    A Fresnel lens ( / ˈfreɪnɛl, - nəl / FRAY-nel, -⁠nəl; / ˈfrɛnɛl, - əl / FREN-el, -⁠əl; or / freɪˈnɛl / fray-NEL [1]) is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections.

  4. Augustin-Jean Fresnel - Wikipedia

    en.wikipedia.org/wiki/Augustin-Jean_Fresnel

    Augustin-Jean Fresnel [Note 1] (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton 's corpuscular theory, from the late 1830s [3] until the end of the 19th century.

  5. Fresnel rhomb - Wikipedia

    en.wikipedia.org/wiki/Fresnel_rhomb

    A Fresnel rhomb is an optical prism that introduces a 90° phase difference between two perpendicular components of polarization, by means of two total internal reflections. If the incident beam is linearly polarized at 45° to the plane of incidence and reflection, the emerging beam is circularly polarized, and vice versa.

  6. Brewster's angle - Wikipedia

    en.wikipedia.org/wiki/Brewster's_angle

    one can calculate the incident angle θ 1 = θ B at which no light is reflected: n 1 sin ⁡ θ B = n 2 sin ⁡ ( 90 ∘ − θ B ) = n 2 cos ⁡ θ B . {\displaystyle n_{1}\sin \theta _{\mathrm {B} }=n_{2}\sin(90^{\circ }-\theta _{\mathrm {B} })=n_{2}\cos \theta _{\mathrm {B} }.}

  7. Fresnel number - Wikipedia

    en.wikipedia.org/wiki/Fresnel_number

    The Fresnel number is a useful concept in physical optics. The Fresnel number establishes a coarse criterion to define the near and far field approximations. Essentially, if Fresnel number is small – less than roughly 1 – the beam is said to be in the far field. If Fresnel number is larger than 1, the beam is said to be near field. However ...

  8. Fizeau experiment - Wikipedia

    en.wikipedia.org/wiki/Fizeau_experiment

    The Fizeau experiment [1] [2] [3] was carried out by Hippolyte Fizeau in 1851 to measure the relative speeds of light in moving water. Fizeau used a special interferometer arrangement to measure the effect of movement of a medium upon the speed of light. According to the theories prevailing at the time, light traveling through a moving medium ...

  9. Diffraction grating - Wikipedia

    en.wikipedia.org/wiki/Diffraction_grating

    A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.

  10. Fresnel integral - Wikipedia

    en.wikipedia.org/wiki/Fresnel_integral

    The Fresnel integrals admit the following power series expansions that converge for all x: S ( x ) = ∫ 0 x sin ⁡ ( t 2 ) d t = ∑ n = 0 ∞ ( − 1 ) n x 4 n + 3 ( 2 n + 1 ) ! ( 4 n + 3 ) , C ( x ) = ∫ 0 x cos ⁡ ( t 2 ) d t = ∑ n = 0 ∞ ( − 1 ) n x 4 n + 1 ( 2 n ) !

  11. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    Fresnel free-space-propagation operator ( 1 d 0 1 ) {\displaystyle {\begin{pmatrix}1&d\\0&1\end{pmatrix}}} R [ d ] { U ( x 1 ) } = 1 i λ d ∫ − ∞ ∞ U ( x 1 ) e i k 2 d ( x 2 − x 1 ) 2 d x 1 {\displaystyle {\mathcal {R}}[d]\left\{U\left(x_{1}\right)\right\}={\frac {1}{\sqrt {i\lambda d}}}\int _{-\infty }^{\infty }U\left(x_{1}\right)e ...