enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis.

  4. Square antiprism - Wikipedia

    en.wikipedia.org/wiki/Square_antiprism

    According to the VSEPR theory of molecular geometry in chemistry, which is based on the general principle of maximizing the distances between points, a square antiprism is the favoured geometry when eight pairs of electrons surround a central atom. One molecule with this geometry is the octafluoroxenate(VI) ion (XeF 2−

  5. Square antiprismatic molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Square_antiprismatic...

    In chemistry, the square antiprismatic molecular geometry describes the shape of compounds where eight atoms, groups of atoms, or ligands are arranged around a central atom, defining the vertices of a square antiprism. [1]

  6. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring , Meredith Gwynne Evans and Michael Polanyi .

  7. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    This equation was first proposed in 1913, and is commonly known as the Andrade equation (named after British physicist Edward Andrade). It accurately describes many liquids over a range of temperatures.

  8. IC50 - Wikipedia

    en.wikipedia.org/wiki/IC50

    EC 50 represents the dose or plasma concentration required for obtaining 50% of a maximum effect in vivo. [1] IC 50 can be determined with functional assays or with competition binding assays. Sometimes, IC 50 values are converted to the pIC50 scale.

  9. Marcus theory - Wikipedia

    en.wikipedia.org/wiki/Marcus_theory

    The result for two conducting spheres in a solvent is the formula of Marcus G = ( 1 2 r 1 + 1 2 r 2 − 1 R ) ⋅ ( 1 ϵ opt − 1 ϵ s ) ⋅ ( Δ e ) 2 {\displaystyle G=\left({\frac {1}{2r_{1}}}+{\frac {1}{2r_{2}}}-{\frac {1}{R}}\right)\cdot \left({\frac {1}{\epsilon _{\text{opt}}}}-{\frac {1}{\epsilon _{\text{s}}}}\right)\cdot (\Delta e)^{2}}

  10. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  11. Buckingham potential - Wikipedia

    en.wikipedia.org/wiki/Buckingham_potential

    The formula for the BKS potential is expressed as Φ 12 ( r ) = [ A 12 exp ⁡ ( − B 12 r 12 ) − C 12 r 12 6 ] + q 1 q 2 r 12 {\displaystyle \Phi _{12}(r)=\left[A_{12}\exp \left(-B_{12}r_{12}\right)-{\frac {C_{12}}{r_{12}^{6}}}\right]+{\frac {q_{1}q_{2}}{r_{12}}}}