enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Washburn's equation - Wikipedia

    en.wikipedia.org/wiki/Washburn's_equation

    In physics, Washburn's equation describes capillary flow in a bundle of parallel cylindrical tubes; it is extended with some issues also to imbibition into porous materials. The equation is named after Edward Wight Washburn; [1] also known as Lucas–Washburn equation, considering that Richard Lucas [2] wrote a similar paper three years earlier ...

  3. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to ...

  4. Richards equation - Wikipedia

    en.wikipedia.org/wiki/Richards_equation

    Richards equation. The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. [1] It is a quasilinear partial differential equation; its analytical solution is often limited to specific initial and boundary conditions. [2]

  5. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    For the case of a sphere in a uniform far field flow, it is advantageous to use a cylindrical coordinate system (r, φ, z). The z –axis is through the centre of the sphere and aligned with the mean flow direction, while r is the radius as measured perpendicular to the z –axis. The origin is at the sphere centre.

  6. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    v. t. e. In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol Q (sometimes ). It contrasts with mass flow rate, which is the other main type of fluid flow rate.

  7. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  8. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    Mass transfer coefficient. In engineering, the mass transfer coefficient is a diffusion rate constant that relates the mass transfer rate, mass transfer area, and concentration change as driving force: [1] Where: k c {\displaystyle k_ {c}} is the mass transfer coefficient [mol/ (s·m 2 )/ (mol/m 3 )], or m/s.

  9. Mass flow rate - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_rate

    Dimension. In physics and engineering, mass flow rate is the mass of a substance which passes per unit of time. Its unit is kilogram per second in SI units, and slug per second or pound per second in US customary units. The common symbol is ( ṁ, pronounced "m-dot"), although sometimes μ ( Greek lowercase mu) is used.