enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The two equations above can be derived by adding or subtracting Euler's formulas: e i x = cos ⁡ x + i sin ⁡ x , e − i x = cos ⁡ ( − x ) + i sin ⁡ ( − x ) = cos ⁡ x − i sin ⁡ x {\displaystyle {\begin{aligned}e^{ix}&=\cos x+i\sin x,\\e^{-ix}&=\cos(-x)+i\sin(-x)=\cos x-i\sin x\end{aligned}}}

  4. Effective medium approximations - Wikipedia

    en.wikipedia.org/wiki/Effective_medium...

    Applications. There are many different effective medium approximations, each of them being more or less accurate in distinct conditions. Nevertheless, they all assume that the macroscopic system is homogeneous and, typical of all mean field theories, they fail to predict the properties of a multiphase medium close to the percolation threshold due to the absence of long-range correlations or ...

  5. Strabismus - Wikipedia

    en.wikipedia.org/wiki/Strabismus

    Incomitant strabismus cannot be fully corrected by prism glasses, because the eyes would require different degrees of prismatic correction dependent on the direction of the gaze. Incomitant strabismus of the eso- or exo-type are classified as "alphabet patterns": they are denoted as A- or V- or more rarely λ -, Y- or X-pattern depending on the ...

  6. Bolometric correction - Wikipedia

    en.wikipedia.org/wiki/Bolometric_correction

    Bolometric correction. In astronomy, the bolometric correction is the correction made to the absolute magnitude of an object in order to convert its visible magnitude to its bolometric magnitude. It is large for stars which radiate most of their energy outside of the visible range. A uniform scale for the correction has not yet been standardized.

  7. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    It deviates in the ultraviolet and infrared regions. In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, who originally defined it in 1830 in his article "The refraction and ...

  8. Minimum deviation - Wikipedia

    en.wikipedia.org/wiki/Minimum_deviation

    The angle of incidence and angle of emergence equal each other ( i = e ). This is clearly visible in the graph below. The formula for minimum deviation can be derived by exploiting the geometry in the prism. The approach involves replacing the variables in the Snell's law in terms of the Deviation and Prism Angles by making the use of the above ...

  9. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  10. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    First, the predictor step: starting from the current value , calculate an initial guess value via the Euler method, Next, the corrector step: improve the initial guess using trapezoidal rule, That value is used as the next step.

  11. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}