enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Bolometric correction - Wikipedia

    en.wikipedia.org/wiki/Bolometric_correction

    Description. Mathematically, such a calculation can be expressed: The bolometric correction for a range of stars with different spectral types and groups is shown in the following table: [1] [2] [3] The bolometric correction is large and negative both for early type (hot) stars and for late type (cool) stars.

  4. Dioptre - Wikipedia

    en.wikipedia.org/wiki/Dioptre

    1 m −1. Illustration of the relationship between optical power in dioptres and focal length in metres. A dioptre ( British spelling) or diopter ( American spelling ), symbol dpt, is a unit of measurement with dimension of reciprocal length, equivalent to one reciprocal metre, 1 dpt = 1 m−1. It is normally used to express the optical power ...

  5. Esotropia - Wikipedia

    en.wikipedia.org/wiki/Esotropia

    Esotropia is a form of strabismus in which one or both eyes turn inward. The condition can be constantly present, or occur intermittently, and can give the affected individual a "cross-eyed" appearance. [1] It is the opposite of exotropia and usually involves more severe axis deviation than esophoria. Esotropia is sometimes erroneously called ...

  6. Prandtl–Glauert transformation - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Glauert...

    The small-disturbance potential equation then transforms to the Laplace equation, ϕ ¯ x ¯ x ¯ + ϕ ¯ y ¯ y ¯ + ϕ ¯ z ¯ z ¯ = 0 (in flow field) {\displaystyle {\bar {\phi }}_{{\bar {x}}{\bar {x}}}+{\bar {\phi }}_{{\bar {y}}{\bar {y}}}+{\bar {\phi }}_{{\bar {z}}{\bar {z}}}=0\quad {\mbox{(in flow field)}}}

  7. K correction - Wikipedia

    en.wikipedia.org/wiki/K_correction

    The K-correction can be defined as follows M = m − 5 ( log 10 ⁡ D L − 1 ) − K C o r r {\displaystyle M=m-5(\log _{10}{D_{L}}-1)-K_{Corr}\!\,} I.E. the adjustment to the standard relationship between absolute and apparent magnitude required to correct for the redshift effect. [4]

  8. Benesi–Hildebrand method - Wikipedia

    en.wikipedia.org/wiki/Benesi–Hildebrand_method

    The equation that they developed is as follows: K − 1 = A ε HG − [ H ] 0 − [ G ] 0 + C H C G A ε HG {\displaystyle K^{-1}={\frac {A}{\varepsilon _{\ce {HG}}}}-[{\ce {H}}]_{0}-[{\ce {G}}]_{0}+{\frac {C_{\ce {H}}C_{\ce {G}}}{A}}\varepsilon _{\ce {HG}}}

  9. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}

  10. Aberration (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Aberration_(astronomy)

    This gives an angular correction ⁡ = / ≈ 0.000099364 rad = 20.49539 sec, which can be solved to give = / = ≈ 0.000099365 rad = 20.49559 sec, very nearly the same as the aberrational correction (here is in radian and not in arcsecond).

  11. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    It can readily be seen that the formula above for motion along the equator follows from the more general equation below for any latitude where along the equator v = 0.0 and ⁡ = a r = 2 Ω u cos ⁡ ϕ + u 2 + v 2 R {\displaystyle a_{r}=2\Omega u\cos \phi +{\frac {u^{2}+v^{2}}{R}}}