enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    It deviates in the ultraviolet and infrared regions. In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, who originally defined it in 1830 in his article "The refraction and ...

  3. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  4. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    v. t. e. The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.

  6. Vertex distance - Wikipedia

    en.wikipedia.org/wiki/Vertex_distance

    The formula for vertex correction is = (), where F c is the power corrected for vertex distance, F is the original lens power, and x is the change in vertex distance in meters.

  7. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    Explanation of the cosine in the first term. The force of gravity and the normal force. The resultant force acts as the required centripetal force. The mathematical derivation for the Eötvös effect for motion along the Equator explains the factor 2 in the first term of the Eötvös correction formula.

  8. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    Common symbols. TKE, k. In SI base units. J / kg = m 2 ⋅ s −2. Derivations from. other quantities. k = 1 2 ( ( u ′ ) 2 ¯ + ( v ′ ) 2 ¯ + ( w ′ ) 2 ¯ ) {\displaystyle k= {\frac {1} {2}}\left (\, {\overline { (u')^ {2}}}+ {\overline { (v')^ {2}}}+ {\overline { (w')^ {2}}}\,\right)}

  9. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    List of equations in nuclear and particle physics; List of equations in quantum mechanics; List of equations in wave theory; List of relativistic equations; Sources. P.M. Whelan; M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1. G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge ...

  10. Hypsometric equation - Wikipedia

    en.wikipedia.org/wiki/Hypsometric_equation

    where the correction due to the Eötvös effect, A, can be expressed as follows: A = − 1 g ( 2 Ω u ¯ cos ⁡ ϕ + u ¯ 2 + v ¯ 2 r ) , {\displaystyle A=-{\frac {1}{g}}\left(2\Omega {\overline {u}}\cos \phi +{\frac {{\overline {u}}^{2}+{\overline {v}}^{2}}{r}}\right),}

  11. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    The formula for escape velocity can be obtained from the Vis-viva equation by taking the limit as approaches : v e 2 = G M ( 2 r − 0 ) → v e = 2 G M r {\displaystyle v_{e}^{2}=GM\left({\frac {2}{r}}-0\right)\rightarrow v_{e}={\sqrt {\frac {2GM}{r}}}}