enow.com Web Search

  1. Ad

    related to: esophoria prism correction formula physics equation solver

Search results

  1. Results from the WOW.Com Content Network
  2. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    v. t. e. The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.

  3. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  4. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Planck–Einstein equation and de Broglie wavelength relations. P = ( E/c, p) is the four-momentum, K = (ω/ c, k) is the four-wavevector, E = energy of particle. ω = 2π f is the angular frequency and frequency of the particle. ħ = h /2π are the Planck constants. c = speed of light. Schrödinger equation.

  5. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz factor. where and v is the relative velocity between two inertial frames . For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame)

  6. Tolman–Oppenheimer–Volkoff equation - Wikipedia

    en.wikipedia.org/wiki/Tolman–Oppenheimer...

    In astrophysics, the Tolman–Oppenheimer–Volkoff ( TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modeled by general relativity. The equation [1] is. Here, is a radial coordinate, and and are the density and pressure, respectively, of the material ...

  7. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Linearity. The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination. of the two state vectors where a and b are any complex numbers. [13] : 25 Moreover, the sum can be extended for any number of state vectors.

  8. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    In the case of time-independent and , i.e. / = / =, Hamilton's equations consist of 2n first-order differential equations, while Lagrange's equations consist of n second-order equations. Hamilton's equations usually do not reduce the difficulty of finding explicit solutions, but important theoretical results can be derived from them, because ...

  9. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    List of equations in nuclear and particle physics; List of equations in quantum mechanics; List of equations in wave theory; List of relativistic equations; Sources. P.M. Whelan; M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1. G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge ...

  10. Gibbs paradox - Wikipedia

    en.wikipedia.org/wiki/Gibbs_paradox

    Removing or reinserting the wall is reversible, but the entropy increases when the barrier is removed by the amount. which is in contradiction to thermodynamics if you re-insert the barrier. This is the Gibbs paradox. The paradox is resolved by postulating that the gas particles are in fact indistinguishable.

  11. Bolometric correction - Wikipedia

    en.wikipedia.org/wiki/Bolometric_correction

    Bolometric correction. In astronomy, the bolometric correction is the correction made to the absolute magnitude of an object in order to convert its visible magnitude to its bolometric magnitude. It is large for stars which radiate most of their energy outside of the visible range. A uniform scale for the correction has not yet been standardized.