enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Calculate U 1, U 2 and L, and set initial value of λ = L. Then iteratively evaluate the following equations until λ converges: sin ⁡ σ = ( cos ⁡ U 2 sin ⁡ λ ) 2 + ( cos ⁡ U 1 sin ⁡ U 2 − sin ⁡ U 1 cos ⁡ U 2 cos ⁡ λ ) 2 {\displaystyle \sin \sigma ={\sqrt {\left(\cos U_{2}\sin \lambda \right)^{2}+\left(\cos U_{1}\sin U_{2 ...

  4. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest [1] [2] [3] early in the 20th century. [4] [5] The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high- frequency ...

  5. Esotropia - Wikipedia

    en.wikipedia.org/wiki/Esotropia

    Esotropia is a form of strabismus in which one or both eyes turn inward. The condition can be constantly present, or occur intermittently, and can give the affected individual a "cross-eyed" appearance. [1] It is the opposite of exotropia and usually involves more severe axis deviation than esophoria. Esotropia is sometimes erroneously called ...

  6. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    In geometry, Cavalieri's principle, a modern implementation of the method of indivisibles, named after Bonaventura Cavalieri, is as follows: [1] 2-dimensional case: Suppose two regions in a plane are included between two parallel lines in that plane. If every line parallel to these two lines intersects both regions in line segments of equal ...

  7. Spherical aberration - Wikipedia

    en.wikipedia.org/wiki/Spherical_aberration

    Spherical aberration of collimated light incident on a concave spherical mirror. In optics, spherical aberration ( SA) is a type of aberration found in optical systems that have elements with spherical surfaces. This phenomenon commonly affects lenses and curved mirrors, as these components are often shaped in a spherical manner for ease of ...

  8. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Since the Fresnel equations were developed for optics, they are usually given for non-magnetic materials. Dividing ( 4) by ( 5 )) yields. For non-magnetic media we can substitute the vacuum permeability μ0 for μ, so that that is, the admittances are simply proportional to the corresponding refractive indices.

  9. Perturbation theory - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory

    In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. [1] [2] A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbative" parts. [3]

  10. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    e. The Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US$ 1 million prize for the first correct solution to each problem. The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved ...

  11. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    The force of gravity and the normal force. The resultant force acts as the required centripetal force. The mathematical derivation for the Eötvös effect for motion along the Equator explains the factor 2 in the first term of the Eötvös correction formula. What remains to be explained is the cosine factor.