enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}

  4. Presbyopia - Wikipedia

    en.wikipedia.org/wiki/Presbyopia

    Presbyopia is a typical part of the aging process. [4] It occurs due to age related changes in the lens (decreased elasticity and increased hardness) and ciliary muscle (decreased strength and ability to move the lens), causing the eye to focus right behind rather than on the retina when looking at close objects. [4]

  5. Esotropia - Wikipedia

    en.wikipedia.org/wiki/Esotropia

    Treatment options for esotropia include glasses to correct refractive errors (see accommodative esotropia below), the use of prisms, orthoptic exercises, or eye muscle surgery. The term is from Greek eso meaning "inward" and trope meaning "a turning".

  6. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    The force of gravity and the normal force. The resultant force acts as the required centripetal force. The mathematical derivation for the Eötvös effect for motion along the Equator explains the factor 2 in the first term of the Eötvös correction formula. What remains to be explained is the cosine factor.

  7. Ericson-Ericson Lorentz-Lorenz correction - Wikipedia

    en.wikipedia.org/wiki/Ericson-Ericson_Lorentz...

    Ericson-Ericson Lorentz-Lorenz correction. Ericson-Ericson Lorentz-Lorenz correction, also called the Ericson-Ericson Lorentz-Lorenz effect (EELL), refers to an analogy in the interface between nuclear, atomic and particle physics, which in its simplest form corresponds to the well known Lorentz-Lorenz equation (also referred to as the Clausius ...

  8. Prandtl–Glauert transformation - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Glauert...

    Prandtl–Glauert transformation. The Prandtl–Glauert transformation is a mathematical technique which allows solving certain compressible flow problems by incompressible -flow calculation methods. It also allows applying incompressible-flow data to compressible-flow cases.

  9. Hierarchy problem - Wikipedia

    en.wikipedia.org/wiki/Hierarchy_problem

    The formula is: g ( r ) = − m e r M P l 3 + 1 + δ 2 + δ r 2 n δ {\displaystyle \mathbf {g} (\mathbf {r} )=-m{\frac {\mathbf {e_{r}} }{M_{\mathrm {Pl} _{3+1+\delta }}^{2+\delta }r^{2}n^{\delta }}}}

  10. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    Dispersion (optics) In a dispersive prism, material dispersion (a wavelength -dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. In optics and in wave propagation in general, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency; [1 ...

  11. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    It deviates in the ultraviolet and infrared regions. In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, who originally defined it in 1830 in his article "The refraction and ...