enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  3. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    It deviates in the ultraviolet and infrared regions. In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, who originally defined it in 1830 in his article "The refraction and ...

  4. Dioptre - Wikipedia

    en.wikipedia.org/wiki/Dioptre

    A dioptre ( British spelling) or diopter ( American spelling ), symbol dpt, is a unit of measurement with dimension of reciprocal length, equivalent to one reciprocal metre, 1 dpt = 1 m−1. It is normally used to express the optical power of a lens or curved mirror, which is a physical quantity equal to the reciprocal of the focal length ...

  5. Quantum electrodynamics - Wikipedia

    en.wikipedia.org/wiki/Quantum_electrodynamics

    e. In particle physics, quantum electrodynamics ( QED) is the relativistic quantum field theory of electrodynamics. [1] [2] [3] In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. [2]

  6. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    Fine structure. Interference fringes, showing fine structure (splitting) of a cooled deuterium source, viewed through a Fabry–Pérot interferometer. In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation.

  7. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    Definition. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: Circular orbit: e = 0. Elliptic orbit: 0 < e < 1. Parabolic trajectory: e = 1.

  8. Brewster's angle - Wikipedia

    en.wikipedia.org/wiki/Brewster's_angle

    This equation is known as Brewster's law, and the angle defined by it is Brewster's angle. The physical mechanism for this can be qualitatively understood from the manner in which electric dipoles in the media respond to p-polarized light. One can imagine that light incident on the surface is absorbed, and then re-radiated by oscillating ...

  9. Spherical aberration - Wikipedia

    en.wikipedia.org/wiki/Spherical_aberration

    Spherical aberration of collimated light incident on a concave spherical mirror. In optics, spherical aberration ( SA) is a type of aberration found in optical systems that have elements with spherical surfaces. This phenomenon commonly affects lenses and curved mirrors, as these components are often shaped in a spherical manner for ease of ...

  10. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination. of the two state vectors where a and b are any complex numbers. [13] : 25 Moreover, the sum can be extended for any number of state vectors.

  11. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    Dispersion (optics) In a dispersive prism, material dispersion (a wavelength -dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. In optics and in wave propagation in general, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency; [1 ...