enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Pellin–Broca prism - Wikipedia

    en.wikipedia.org/wiki/Pellin–Broca_prism

    The prism is named for its inventors, the French instrument maker Ph. Pellin and professor of physiological optics André Broca. [1] The prism consists of a four-sided block of glass shaped as a right prism with 90°, 75°, 135°, and 60° angles on the end faces. Light enters the prism through face AB, undergoes total internal reflection from ...

  4. Prism (optics) - Wikipedia

    en.wikipedia.org/wiki/Prism_(optics)

    Prism (optics) An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides.

  5. Weak localization - Wikipedia

    en.wikipedia.org/wiki/Weak_localization

    Weak localization. Weak localization is a physical effect which occurs in disordered electronic systems at very low temperatures. The effect manifests itself as a positive correction to the resistivity of a metal or semiconductor. [1] The name emphasizes the fact that weak localization is a precursor of Anderson localization, which occurs at ...

  6. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free-air correction is the amount that must be added to a measurement at height to correct it to the reference level: δ g F = 2 g R × h {\displaystyle \delta g_{F}={\frac {2g}{R}}\times h} Here we have assumed that measurements are made relatively close to the surface so that R does not vary significantly.

  7. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.

  8. Stellar classification - Wikipedia

    en.wikipedia.org/wiki/Stellar_classification

    Stellar classification. In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines.

  9. Effective medium approximations - Wikipedia

    en.wikipedia.org/wiki/Effective_medium...

    Applications. There are many different effective medium approximations, each of them being more or less accurate in distinct conditions. Nevertheless, they all assume that the macroscopic system is homogeneous and, typical of all mean field theories, they fail to predict the properties of a multiphase medium close to the percolation threshold due to the absence of long-range correlations or ...

  10. Maddox rod - Wikipedia

    en.wikipedia.org/wiki/Maddox_rod

    sc: without correction - F: far - N: near - FR: fixing right - FL: fixing left - BD: base down prisms - BU: base up prisms - BO: base out prisms - BI: base in prisms - eso: esotropia - exo: exotropias - L/R: left hypertropia or right hypotropia - R/L: right hypertropia or left hypotropia Double Maddox rod test

  11. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.