enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maddox wing - Wikipedia

    en.wikipedia.org/wiki/Maddox_Wing

    Maddox wing. The Maddox Wing is an instrument utilized by ophthalmologists, orthoptists and optometrists in the measurement of strabismus (misalignment of the eyes; commonly referred to as a squint or lazy eye by the lay person). It is a quantitative and subjective method of measuring the size of a strabismic deviation by dissociation of the ...

  3. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  4. Prism cover test - Wikipedia

    en.wikipedia.org/wiki/Prism_Cover_Test

    The prism cover test ( PCT) is an objective measurement and the gold standard in measuring strabismus, i.e. ocular misalignment, or a deviation of the eye. [1] It is used by ophthalmologists and orthoptists in order to measure the vertical and horizontal deviation and includes both manifest and latent components. [1]

  5. Anisometropia - Wikipedia

    en.wikipedia.org/wiki/Anisometropia

    Amblyopia. Anisometropia is a condition in which a person's eyes have substantially differing refractive power. [1] Generally, a difference in power of one diopter (1D) is the threshold for diagnosis of the condition . [2] [3] Patients may have up to 3D of anisometropia before the condition becomes clinically significant due to headache, eye ...

  6. Heterophoria - Wikipedia

    en.wikipedia.org/wiki/Heterophoria

    Heterophoria is an eye condition in which the directions that the eyes are pointing at rest position, when not performing binocular fusion, are not the same as each other, or, "not straight". This condition can be esophoria, where the eyes tend to cross inward in the absence of fusion; exophoria, in which they diverge; or hyperphoria, in which ...

  7. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  8. Vertex distance - Wikipedia

    en.wikipedia.org/wiki/Vertex_distance

    Vertex distance is the distance between the back surface of a corrective lens, i.e. glasses (spectacles) or contact lenses, and the front of the cornea. Increasing or decreasing the vertex distance changes the optical properties of the system, by moving the focal point forward or backward, effectively changing the power of the lens relative to ...

  9. Holm–Bonferroni method - Wikipedia

    en.wikipedia.org/wiki/Holm–Bonferroni_method

    The simple Bonferroni correction rejects only null hypotheses with p-value less than or equal to , in order to ensure that the FWER, i.e., the risk of rejecting one or more true null hypotheses (i.e., of committing one or more type I errors) is at most . The cost of this protection against type I errors is an increased risk of failing to reject ...

  10. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz transformation. The following notations are used very often in special relativity: Lorentz factor. where and v is the relative velocity between two inertial frames . For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞.

  11. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}