enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  3. Anisometropia - Wikipedia

    en.wikipedia.org/wiki/Anisometropia

    Example. Consider a pair of spectacles to correct for myopia with a prescription of −1.00 m −1 in one eye and −4.00 m −1 in the other. Suppose that for both eyes the other parameters are identical, namely t = 1 mm = 0.001 m, n = 1.6, P = 5 m −1, and h = 15 mm = 0.015 m.

  4. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  5. Vertex distance - Wikipedia

    en.wikipedia.org/wiki/Vertex_distance

    The formula for vertex correction is = (), where F c is the power corrected for vertex distance, F is the original lens power, and x is the change in vertex distance in meters.

  6. Prism cover test - Wikipedia

    en.wikipedia.org/wiki/Prism_Cover_Test

    Either BASE IN for an exodeviation (eye turned out), BASE OUT for an esodeviation (eye turned in), BASE UP for a hypodeviation (eye turned down) or BASE DOWN for a hyperdeviation (eye turned up). [5] Steps: 1. The patient should be measured in primary position first and then in any other positions of gaze of concern.

  7. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}

  8. Spherical aberration - Wikipedia

    en.wikipedia.org/wiki/Spherical_aberration

    Spherical aberration of collimated light incident on a concave spherical mirror. In optics, spherical aberration ( SA) is a type of aberration found in optical systems that have elements with spherical surfaces. This phenomenon commonly affects lenses and curved mirrors, as these components are often shaped in a spherical manner for ease of ...

  9. Aberration (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Aberration_(astronomy)

    This gives an angular correction ⁡ = / ≈ 0.000099364 rad = 20.49539 sec, which can be solved to give = / = ≈ 0.000099365 rad = 20.49559 sec, very nearly the same as the aberrational correction (here is in radian and not in arcsecond).

  10. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis.

  11. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    The formula for escape velocity can be obtained from the Vis-viva equation by taking the limit as approaches : v e 2 = G M ( 2 r − 0 ) → v e = 2 G M r {\displaystyle v_{e}^{2}=GM\left({\frac {2}{r}}-0\right)\rightarrow v_{e}={\sqrt {\frac {2GM}{r}}}}