enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    If a line l goes from vertex v to vertex v′, then M(l) goes from N(v) to N(v′). If the line is undirected, as it is for a real scalar field, then M(l) can go from N(v′) to N(v) too. If a line l ends on an external line, M(l) ends on the same external line. If there are different types of lines, M(l) should preserve the type.

  3. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    Planck's law accurately describes black-body radiation. Shown here are a family of curves for different temperatures. The classical (black) curve diverges from observed intensity at high frequencies (short wavelengths). Formula in cgs units. In physics, Planck's law (also Planck radiation law[1]: 1305 ) describes the spectral density of ...

  4. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such ...

  5. Isaac Newton - Wikipedia

    en.wikipedia.org/wiki/Isaac_Newton

    Sir Isaac Newton FRS (25 December 1642 – 20 March 1726/27 [a]) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author who was described in his time as a natural philosopher. [7]

  6. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. [1] Therefore, even at absolute zero, atoms and molecules retain some vibrational motion.

  7. Quantum entanglement - Wikipedia

    en.wikipedia.org/wiki/Quantum_entanglement

    e. Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance.

  8. Archimedes - Wikipedia

    en.wikipedia.org/wiki/Archimedes

    It is the locus of points corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity. Equivalently, in modern polar coordinates (r, θ), it can be described by the equation = + with real numbers a and b.

  9. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.