enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Benesi–Hildebrand method - Wikipedia

    en.wikipedia.org/wiki/Benesi–Hildebrand_method

    The equation that they developed is as follows: K − 1 = A ε HG − [ H ] 0 − [ G ] 0 + C H C G A ε HG {\displaystyle K^{-1}={\frac {A}{\varepsilon _{\ce {HG}}}}-[{\ce {H}}]_{0}-[{\ce {G}}]_{0}+{\frac {C_{\ce {H}}C_{\ce {G}}}{A}}\varepsilon _{\ce {HG}}}

  3. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  4. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak ...

  5. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    Relativistic corrections (Dirac) to the energy levels of a hydrogen atom from Bohr's model. The fine structure correction predicts that the Lyman-alpha line (emitted in a transition from n = 2 to n = 1) must split into a doublet. The total effect can also be obtained by using the Dirac equation. In this case, the electron is treated as non ...

  6. Buckingham potential - Wikipedia

    en.wikipedia.org/wiki/Buckingham_potential

    The formula for the BKS potential is expressed as Φ 12 ( r ) = [ A 12 exp ⁡ ( − B 12 r 12 ) − C 12 r 12 6 ] + q 1 q 2 r 12 {\displaystyle \Phi _{12}(r)=\left[A_{12}\exp \left(-B_{12}r_{12}\right)-{\frac {C_{12}}{r_{12}^{6}}}\right]+{\frac {q_{1}q_{2}}{r_{12}}}}

  7. Non-random two-liquid model - Wikipedia

    en.wikipedia.org/wiki/Non-random_two-liquid_model

    The non-random two-liquid model [1] (abbreviated NRTL model) is an activity coefficient model introduced by Renon and Prausnitz in 1968 that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned. It is frequently applied in the field of chemical engineering to calculate phase equilibria.

  8. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring, Meredith Gwynne Evans and Michael Polanyi.

  9. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  10. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free-air correction is the amount that must be added to a measurement at height to correct it to the reference level: δ g F = 2 g R × h {\displaystyle \delta g_{F}={\frac {2g}{R}}\times h} Here we have assumed that measurements are made relatively close to the surface so that R does not vary significantly.

  11. Fugacity - Wikipedia

    en.wikipedia.org/wiki/Fugacity

    This formula is based on the molar volume. Since the pressure and the molar volume are related through the equation of state; a typical procedure would be to choose a volume, calculate the corresponding pressure, and then evaluate the right-hand side of the equation. History. The word fugacity is derived from the Latin fugere, to flee.