enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fresnel rhomb - Wikipedia

    en.wikipedia.org/wiki/Fresnel_rhomb

    A Fresnel rhomb is an optical prism that introduces a 90° phase difference between two perpendicular components of polarization, by means of two total internal reflections. If the incident beam is linearly polarized at 45° to the plane of incidence and reflection, the emerging beam is circularly polarized, and vice versa.

  3. Peli Lens - Wikipedia

    en.wikipedia.org/wiki/Peli_Lens

    Peli Lens. The Peli Lens is a mobility aid for people with homonymous hemianopia. It is also known as “EP” or Expansion Prism concept and was developed by Dr. Eli Peli of Schepens Eye Research Institute in 1999. It expands the visual field by 20 degrees. He tested this concept on several patients in his private practice with great success ...

  4. Fresnel lens - Wikipedia

    en.wikipedia.org/wiki/Fresnel_lens

    A Fresnel lens ( / ˈfreɪnɛl, - nəl / FRAY-nel, -⁠nəl; / ˈfrɛnɛl, - əl / FREN-el, -⁠əl; or / freɪˈnɛl / fray-NEL [1]) is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections.

  5. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    Since the Fresnel equations were developed for optics, they are usually given for non-magnetic materials. Dividing ( 4) by ( 5 )) yields. For non-magnetic media we can substitute the vacuum permeability μ0 for μ, so that that is, the admittances are simply proportional to the corresponding refractive indices.

  6. Augustin-Jean Fresnel - Wikipedia

    en.wikipedia.org/wiki/Augustin-Jean_Fresnel

    Augustin-Jean Fresnel [Note 1] (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Newton 's corpuscular theory, from the late 1830s [3] until the end of the 19th century.

  7. Uppendahl prism - Wikipedia

    en.wikipedia.org/wiki/Uppendahl_prism

    An Uppendahl prism [1] is an erecting prism, i.e. a special reflection prism that is used to invert an image (rotation by 180°). The erecting system consists of three partial prisms made of optical glass with a high refractive index cemented together to form a symmetric assembly and is [2] used in microscopy as well as in binoculars technology.

  8. Prism (optics) - Wikipedia

    en.wikipedia.org/wiki/Prism_(optics)

    Prism (optics) An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides.

  9. Transfer-matrix method (optics) - Wikipedia

    en.wikipedia.org/wiki/Transfer-matrix_method...

    The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [1] [2] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors . The reflection of light from a single interface between ...

  10. Fresnel number - Wikipedia

    en.wikipedia.org/wiki/Fresnel_number

    The Fresnel number is a useful concept in physical optics. The Fresnel number establishes a coarse criterion to define the near and far field approximations. Essentially, if Fresnel number is small – less than roughly 1 – the beam is said to be in the far field. If Fresnel number is larger than 1, the beam is said to be near field.

  11. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    The transverse directions x and y (below we only consider the x direction) are then defined to be orthogonal to the optical axes applying. A light ray enters a component crossing its input plane at a distance x 1 from the optical axis, traveling in a direction that makes an angle θ 1 with the optical axis.