enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Benesi–Hildebrand method - Wikipedia

    en.wikipedia.org/wiki/Benesi–Hildebrand_method

    The equation that they developed is as follows: K − 1 = A ε HG − [ H ] 0 − [ G ] 0 + C H C G A ε HG {\displaystyle K^{-1}={\frac {A}{\varepsilon _{\ce {HG}}}}-[{\ce {H}}]_{0}-[{\ce {G}}]_{0}+{\frac {C_{\ce {H}}C_{\ce {G}}}{A}}\varepsilon _{\ce {HG}}}

  4. IC50 - Wikipedia

    en.wikipedia.org/wiki/IC50

    EC 50 represents the dose or plasma concentration required for obtaining 50% of a maximum effect in vivo. [1] IC 50 can be determined with functional assays or with competition binding assays. Sometimes, IC 50 values are converted to the pIC50 scale.

  5. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak ...

  6. Marcus theory - Wikipedia

    en.wikipedia.org/wiki/Marcus_theory

    The result for two conducting spheres in a solvent is the formula of Marcus G = ( 1 2 r 1 + 1 2 r 2 − 1 R ) ⋅ ( 1 ϵ opt − 1 ϵ s ) ⋅ ( Δ e ) 2 {\displaystyle G=\left({\frac {1}{2r_{1}}}+{\frac {1}{2r_{2}}}-{\frac {1}{R}}\right)\cdot \left({\frac {1}{\epsilon _{\text{opt}}}}-{\frac {1}{\epsilon _{\text{s}}}}\right)\cdot (\Delta e)^{2}}

  7. Chemical equation - Wikipedia

    en.wikipedia.org/wiki/Chemical_equation

    Using the same chemical equation again, write the corresponding matrix equation: s 1 CH 4 + s 2 O 2 s 3 CO 2 + s 4 H 2 O {\displaystyle {\ce {{\mathit {s}}_{1}{CH4}+{\mathit {s}}_{2}{O2}->{\mathit {s}}_{3}{CO2}+{\mathit {s}}_{4}{H2O}}}}

  8. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  9. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    Chemical formula A (mPa·s) B (K) C (K −1) D (K −2) Temp. range (K) Water: H 2 O 1.856·10 −11: 4209 0.04527 −3.376·10 −5: 273–643 Ethanol: C 2 H 6 O 0.00201 1614 0.00618 −1.132·10 −5: 168–516 Benzene: C 6 H 6: 100.69 148.9 −0.02544 2.222·10 −5: 279–561 Cyclohexane: C 6 H 12: 0.01230 1380 −1.55·10 −3: 1.157·10 ...

  10. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring, Meredith Gwynne Evans and Michael Polanyi.

  11. Relativistic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_mechanics

    In physics, relativistic quantum mechanics ( RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, [1] particle ...