enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relativistic quantum chemistry - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_chemistry

    Relativistic quantum chemistry. Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of gold: due to relativistic effects, it is not silvery like most ...

  3. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak ...

  4. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  5. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld. Sommerfeld argued that if electronic orbits ...

  6. Renormalization - Wikipedia

    en.wikipedia.org/wiki/Renormalization

    Renormalization. Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions.

  7. Quantum error correction - Wikipedia

    en.wikipedia.org/wiki/Quantum_error_correction

    Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum ...

  8. Chemical physics - Wikipedia

    en.wikipedia.org/wiki/Chemical_physics

    Chemical physics is a branch of physics that studies chemical processes from a physical point of view. It focuses on understanding the physical properties and behavior of chemical systems, using principles from both physics and chemistry. This field investigates physicochemical phenomena using techniques from atomic and molecular physics and ...

  9. Density matrix renormalization group - Wikipedia

    en.wikipedia.org/wiki/Density_matrix...

    The density matrix renormalization group (DMRG) is a numerical variational technique devised to obtain the low-energy physics of quantum many-body systems with high accuracy. As a variational method , DMRG is an efficient algorithm that attempts to find the lowest-energy matrix product state wavefunction of a Hamiltonian.

  10. Basis set superposition error - Wikipedia

    en.wikipedia.org/wiki/Basis_set_superposition_error

    Whereas in the CHA model, those orbitals have no greater intrinsic freedom and therefore the correction treats all fragments equally. The errors inherent in either BSSE correction disappear more rapidly than the total value of BSSE in larger basis sets. See also. Basis set (chemistry) Quantum chemistry; Quantum chemistry computer programs

  11. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring, Meredith Gwynne Evans and Michael Polanyi.