enow.com Web Search

  1. Ad

    related to: physics lens calculator

Search results

  1. Results from the WOW.Com Content Network
  2. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    Ray transfer matrix analysis (also known as ABCD matrix analysis) is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element (surface, interface, mirror, or beam travel) is described by a 2×2 ray transfer matrix which operates on a ...

  3. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    The numerical aperture with respect to a point P depends on the half-angle, θ1, of the maximum cone of light that can enter or exit the lens and the ambient index of refraction. As a pencil of light goes through a flat plane of glass, its half-angle changes to θ2. Due to Snell's law, the numerical aperture remains the same: NA = n1 sin θ1 ...

  4. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges ...

  5. Optical resolution - Wikipedia

    en.wikipedia.org/wiki/Optical_resolution

    An imaging system may have many individual components, including one or more lenses, and/or recording and display components. Each of these contributes (given suitable design, and adequate alignment) to the optical resolution of the system; the environment in which the imaging is done often is a further important factor.

  6. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    For optics in the visual range, the amount of dispersion of a lens material is often quantified by the Abbe number: V = n y e l l o w − 1 n b l u e − n r e d . {\displaystyle V={\frac {n_{\mathrm {yellow} }-1}{n_{\mathrm {blue} }-n_{\mathrm {red} }}}.}

  7. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    Cardinal point (optics) In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of a rotationally symmetric, focal, optical system. These are the focal points, the principal points, and the nodal points; there are two of each. [1] For ideal systems, the basic imaging properties such as image size ...

  8. Gravitational lensing formalism - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lensing...

    Here we assumed the lens is a collection of point masses at angular coordinates and distances =. Use sinh − 1 ⁡ 1 / x = ln ⁡ ( 1 / x + 1 / x 2 + 1 ) ≈ − ln ⁡ ( x / 2 ) {\displaystyle \sinh ^{-1}1/x=\ln(1/x+{\sqrt {1/x^{2}+1}})\approx -\ln(x/2)} for very small x we find

  9. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.

  10. Beam divergence - Wikipedia

    en.wikipedia.org/wiki/Beam_divergence

    Beam divergence. In electromagnetics, especially in optics, beam divergence is an angular measure of the increase in beam diameter or radius with distance from the optical aperture or antenna aperture from which the beam emerges. The term is relevant only in the "far field", away from any focus of the beam. Practically speaking, however, the ...

  11. Optical power - Wikipedia

    en.wikipedia.org/wiki/Optical_power

    In optics, optical power (also referred to as dioptric power, refractive power, focusing power, or convergence power) is the degree to which a lens, mirror, or other optical system converges or diverges light. It is equal to the reciprocal of the focal length of the device: P = 1/f. [1]