enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    Planck's law accurately describes black-body radiation. Shown here are a family of curves for different temperatures. The classical (black) curve diverges from observed intensity at high frequencies (short wavelengths). Formula in cgs units. In physics, Planck's law (also Planck radiation law[1]: 1305 ) describes the spectral density of ...

  3. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, [1] Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same ...

  4. Relativistic Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Lagrangian...

    The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.

  5. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.

  6. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Lagrangian. [edit] Instead of forces, Lagrangian mechanics uses the energies in the system. The central quantity of Lagrangian mechanics is the Lagrangian, a function which summarizes the dynamics of the entire system. Overall, the Lagrangian has units of energy, but no single expression for all physical systems.

  7. Dirac equation - Wikipedia

    en.wikipedia.org/wiki/Dirac_equation

    Quantum mechanics. In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is ...

  8. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. [1] Therefore, even at absolute zero, atoms and molecules retain some vibrational motion.

  9. Path integral formulation - Wikipedia

    en.wikipedia.org/wiki/Path_integral_formulation

    The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.