enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  3. Decay correction - Wikipedia

    en.wikipedia.org/wiki/Decay_correction

    Decay correction is one way of working out what the radioactivity would have been at the time it was taken, rather than at the time it was tested. For example, the isotope copper-64, commonly used in medical research, has a half-life of 12.7 hours. If you inject a large group of animals at "time zero", but measure the radioactivity in their ...

  4. Esotropia - Wikipedia

    en.wikipedia.org/wiki/Esotropia

    Esotropia is a form of strabismus in which one or both eyes turn inward. The condition can be constantly present, or occur intermittently, and can give the affected individual a "cross-eyed" appearance. [1] It is the opposite of exotropia and usually involves more severe axis deviation than esophoria. Esotropia is sometimes erroneously called ...

  5. Bolometric correction - Wikipedia

    en.wikipedia.org/wiki/Bolometric_correction

    Bolometric correction. In astronomy, the bolometric correction is the correction made to the absolute magnitude of an object in order to convert its visible magnitude to its bolometric magnitude. It is large for stars which radiate most of their energy outside of the visible range. A uniform scale for the correction has not yet been standardized.

  6. Hypsometric equation - Wikipedia

    en.wikipedia.org/wiki/Hypsometric_equation

    The hypsometric equation is expressed as: [1] = pressure [ Pa ]. In meteorology, and are isobaric surfaces. In radiosonde observation, the hypsometric equation can be used to compute the height of a pressure level given the height of a reference pressure level and the mean virtual temperature in between.

  7. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    The force of gravity and the normal force. The resultant force acts as the required centripetal force. The mathematical derivation for the Eötvös effect for motion along the Equator explains the factor 2 in the first term of the Eötvös correction formula. What remains to be explained is the cosine factor.

  8. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz factor. where and v is the relative velocity between two inertial frames . For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame)

  9. Streeter–Phelps equation - Wikipedia

    en.wikipedia.org/wiki/Streeter–Phelps_equation

    The Streeter–Phelps equation determines the relation between the dissolved oxygen concentration and the biological oxygen demand over time and is a solution to the linear first order differential equation [1] This differential equation states that the total change in oxygen deficit (D) is equal to the difference between the two rates of ...

  10. Semi-empirical mass formula - Wikipedia

    en.wikipedia.org/wiki/Semi-empirical_mass_formula

    The corresponding mass formula is defined purely in terms of the numbers of protons and neutrons it contains. The original Weizsäcker formula defines five terms: Volume energy, when an assembly of nucleons of the same size is packed together into the smallest volume, each interior nucleon has a certain number of other nucleons in contact with ...

  11. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae. Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a ...