enow.com Web Search

  1. Ads

    related to: esophoria prism correction formula pdf format

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  3. Heterophoria - Wikipedia

    en.wikipedia.org/wiki/Heterophoria

    Heterophoria is the misalignment of the visual axis such that one or both eyes are not properly fixated to an object of interest. When the visual axis is misaligned in such a way, it is corrected by the fusional vergence system. Diagnosis. The cross-cover test, or alternating cover test is usually employed to detect heterophoria.

  4. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  5. Exophoria - Wikipedia

    en.wikipedia.org/wiki/Exophoria

    Exophoria. Exophoria is a form of heterophoria in which there is a tendency of the eyes to deviate outward. [1] During examination, when the eyes are dissociated, the visual axes will appear to diverge away from one another. [2] The axis deviation in exophoria is usually mild compared with that of exotropia .

  6. Worth 4 dot test - Wikipedia

    en.wikipedia.org/wiki/Worth_4_dot_test

    assess degree of binocular vision. The Worth Four Light Test, also known as the Worth's four dot test or W4LT, is a clinical test mainly used for assessing a patient's degree of binocular vision and binocular single vision. Binocular vision involves an image being projected by each eye simultaneously into an area in space and being fused into a ...

  7. HSL and HSV - Wikipedia

    en.wikipedia.org/wiki/HSL_and_HSV

    Fig. 1. HSL (a–d) and HSV (e–h). Above (a, e): cut-away 3D models of each. Below: two-dimensional plots showing two of a model's three parameters at once, holding the other constant: cylindrical shells (b, f) of constant saturation, in this case the outside surface of each cylinder; horizontal cross-sections (c, g) of constant HSL lightness or HSV value, in this case the slices halfway ...

  8. Diplopia - Wikipedia

    en.wikipedia.org/wiki/Diplopia

    Specialty. Neurology, ophthalmology. Diplopia is the simultaneous perception of two images of a single object that may be displaced horizontally or vertically in relation to each other. [1] Also called double vision, it is a loss of visual focus under regular conditions, and is often voluntary.

  9. Fixation disparity - Wikipedia

    en.wikipedia.org/wiki/Fixation_disparity

    Fixation disparity. Fixation disparity is a tendency of the eyes to drift in the direction of the heterophoria. While the heterophoria refers to a fusion-free vergence state, the fixation disparity refers to a small misalignment of the visual axes when both eyes are open in an observer with normal fusion and binocular vision. [1]

  10. Aberration (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Aberration_(astronomy)

    Aberration (astronomy) A diagram showing how the apparent position of a star viewed from the Earth can change depending on the Earth's velocity. The effect is typically much smaller than illustrated. In astronomy, aberration (also referred to as astronomical aberration, stellar aberration, or velocity aberration) is a phenomenon where celestial ...

  11. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free-air correction is the amount that must be added to a measurement at height to correct it to the reference level: δ g F = 2 g R × h {\displaystyle \delta g_{F}={\frac {2g}{R}}\times h} Here we have assumed that measurements are made relatively close to the surface so that R does not vary significantly.