enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aberration (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Aberration_(astronomy)

    This gives an angular correction ⁡ = / ≈ 0.000099364 rad = 20.49539 sec, which can be solved to give = / = ≈ 0.000099365 rad = 20.49559 sec, very nearly the same as the aberrational correction (here is in radian and not in arcsecond).

  3. Dioptre - Wikipedia

    en.wikipedia.org/wiki/Dioptre

    A dioptre ( British spelling) or diopter ( American spelling ), symbol dpt, is a unit of measurement with dimension of reciprocal length, equivalent to one reciprocal metre, 1 dpt = 1 m−1. It is normally used to express the optical power of a lens or curved mirror, which is a physical quantity equal to the reciprocal of the focal length ...

  4. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  5. Prism (optics) - Wikipedia

    en.wikipedia.org/wiki/Prism_(optics)

    Prism (optics) An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides.

  6. Maddox wing - Wikipedia

    en.wikipedia.org/wiki/Maddox_Wing

    Maddox wing. The Maddox Wing is an instrument utilized by ophthalmologists, orthoptists and optometrists in the measurement of strabismus (misalignment of the eyes; commonly referred to as a squint or lazy eye by the lay person). It is a quantitative and subjective method of measuring the size of a strabismic deviation by dissociation of the ...

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    v. t. e. The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.

  8. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  9. Presbyopia - Wikipedia

    en.wikipedia.org/wiki/Presbyopia

    Presbyopia is a typical part of the aging process. [4] It occurs due to age related changes in the lens (decreased elasticity and increased hardness) and ciliary muscle (decreased strength and ability to move the lens), causing the eye to focus right behind rather than on the retina when looking at close objects. [4]

  10. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz transformation. The following notations are used very often in special relativity: Lorentz factor. where and v is the relative velocity between two inertial frames . For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞.

  11. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free-air correction is the amount that must be added to a measurement at height to correct it to the reference level: δ g F = 2 g R × h {\displaystyle \delta g_{F}={\frac {2g}{R}}\times h} Here we have assumed that measurements are made relatively close to the surface so that R does not vary significantly.