enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Benesi–Hildebrand method - Wikipedia

    en.wikipedia.org/wiki/Benesi–Hildebrand_method

    The Benesi–Hildebrand method is a mathematical approach used in physical chemistry for the determination of the equilibrium constant K and stoichiometry of non-bonding interactions. This method has been typically applied to reaction equilibria that form one-to-one complexes, such as charge-transfer complexes and host–guest molecular ...

  3. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  4. Quantum tunnelling - Wikipedia

    en.wikipedia.org/wiki/Quantum_tunnelling

    This can be described as a thin region of medium B between two regions of medium A. The analysis of a rectangular barrier by means of the Schrödinger equation can be adapted to these other effects provided that the wave equation has travelling wave solutions in medium A but real exponential solutions in medium B.

  5. Marcus theory - Wikipedia

    en.wikipedia.org/wiki/Marcus_theory

    Marcus theory is used to describe a number of important processes in chemistry and biology, including photosynthesis, corrosion, certain types of chemiluminescence, charge separation in some types of solar cells and more. Besides the inner and outer sphere applications, Marcus theory has been extended to address heterogeneous electron transfer .

  6. Davies equation - Wikipedia

    en.wikipedia.org/wiki/Davies_equation

    The Davies equation is an empirical extension of Debye–Hückel theory which can be used to calculate activity coefficients of electrolyte solutions at relatively high concentrations at 25 °C. The equation, originally published in 1938, [1] was refined by fitting to experimental data. The final form of the equation gives the mean molal ...

  7. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of ...

  8. Antoine equation - Wikipedia

    en.wikipedia.org/wiki/Antoine_equation

    Antoine equation. The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine [ fr] (1825–1897).

  9. Chemical equation - Wikipedia

    en.wikipedia.org/wiki/Chemical_equation

    A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction.

  10. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Linearity. The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination. of the two state vectors where a and b are any complex numbers. [13] : 25 Moreover, the sum can be extended for any number of state vectors.

  11. Relativistic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_mechanics

    In physics, relativistic quantum mechanics ( RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, [1] particle ...