enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Benesi–Hildebrand method - Wikipedia

    en.wikipedia.org/wiki/Benesi–Hildebrand_method

    This can be described by the following equation: [ HG ] = [ H ] 0 K a [ G ] 1 + K a [ G ] {\displaystyle [{\ce {HG}}]={\frac {[{\ce {H}}]_{0}K_{\rm {a}}[{\ce {G}}]}{1+K_{\rm {a}}[{\ce {G}}]}}} By substituting the binding isotherm equation into the previous equation, the equilibrium constant K a can now be correlated to the change in absorbance ...

  4. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis.

  5. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    Relativistic corrections (Dirac) to the energy levels of a hydrogen atom from Bohr's model. The fine structure correction predicts that the Lyman-alpha line (emitted in a transition from n = 2 to n = 1) must split into a doublet. The total effect can also be obtained by using the Dirac equation. In this case, the electron is treated as non ...

  6. Chemical equation - Wikipedia

    en.wikipedia.org/wiki/Chemical_equation

    A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction.

  7. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of ...

  8. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    Eyring equation. The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring, Meredith Gwynne Evans and Michael Polanyi.

  9. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak ...

  10. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x . When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the Jacobian determinant of f. It carries important information about the local behavior of f.

  11. Buckingham potential - Wikipedia

    en.wikipedia.org/wiki/Buckingham_potential

    The formula for the interaction is Φ 12 ( r ) = A exp ⁡ ( − B r ) − C r 6 + q 1 q 2 4 π ε 0 r {\displaystyle \Phi _{12}(r)=A\exp \left(-Br\right)-{\frac {C}{r^{6}}}+{\frac {q_{1}q_{2}}{4\pi \varepsilon _{0}r}}}