enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron energy loss spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Electron_energy_loss...

    Experimental electron energy loss spectrum, showing the major features: zero-loss peak, plasmon peaks and core loss edge. Electron energy loss spectroscopy ( EELS) is a form of electron microscopy in which a material is exposed to a beam of electrons with a known, narrow range of kinetic energies. Some of the electrons will undergo inelastic ...

  3. GW approximation - Wikipedia

    en.wikipedia.org/wiki/GW_approximation

    t. e. The GW approximation (GWA) is an approximation made in order to calculate the self-energy of a many-body system of electrons. [1] [2] [3] The approximation is that the expansion of the self-energy Σ in terms of the single particle Green's function G and the screened Coulomb interaction W (in units of ) can be truncated after the first term:

  4. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak ...

  5. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Planck–Einstein equation and de Broglie wavelength relations. P = ( E/c, p) is the four-momentum, K = (ω/ c, k) is the four-wavevector, E = energy of particle. ω = 2π f is the angular frequency and frequency of the particle. ħ = h /2π are the Planck constants. c = speed of light. Schrödinger equation.

  6. Spectrum (physical sciences) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(physical_sciences)

    In the physical sciences, the term spectrum was introduced first into optics by Isaac Newton in the 17th century, referring to the range of colors observed when white light was dispersed through a prism. [1] [2] Soon the term referred to a plot of light intensity or power as a function of frequency or wavelength, also known as a spectral ...

  7. Relativistic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_mechanics

    In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c , and can accommodate massless particles .

  8. Surface plasmon resonance - Wikipedia

    en.wikipedia.org/wiki/Surface_plasmon_resonance

    Surface plasmon resonance ( SPR) is a phenomenon that occurs where electrons in a thin metal sheet become excited by light that is directed to the sheet with a particular angle of incidence, and then travel parallel to the sheet. Assuming a constant light source wavelength and that the metal sheet is thin, the angle of incidence that triggers ...

  9. Effective field theory - Wikipedia

    en.wikipedia.org/wiki/Effective_field_theory

    In physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective field theory includes the appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale or energy scale, while ...

  10. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination. of the two state vectors where a and b are any complex numbers. [13] : 25 Moreover, the sum can be extended for any number of state vectors.

  11. Physical chemistry - Wikipedia

    en.wikipedia.org/wiki/Physical_chemistry

    Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibria . Physical chemistry, in contrast to chemical ...