enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prism dioptres. Prism correction is commonly specified in prism dioptres, a unit of angular measurement that is loosely related to the dioptre. Prism dioptres are represented by the Greek symbol delta (Δ) in superscript. A prism of power 1 Δ would produce 1 unit of displacement for an object held 100 units from the prism. [2]

  3. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak ...

  4. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Example: l → = { 0.707107 , − 0.707107 } , n → = { 0 , 1 } , r = n 1 n 2 = 0.9 {\displaystyle {\vec {l}}=\{0.707107,-0.707107\},~{\vec {n}}=\{0,1\},~r={\frac {n_{1}}{n_{2}}}=0.9} c = cos ⁡ θ 1 = 0.707107 , 1 − r 2 ( 1 − c 2 ) = cos ⁡ θ 2 = 0.771362 {\displaystyle c=\cos \theta _{1}=0.707107,~{\sqrt {1-r^{2}\left(1-c^{2}\right ...

  5. Esophoria - Wikipedia

    en.wikipedia.org/wiki/Esophoria

    Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria. Cause. Causes include: Refractive errors; Divergence insufficiency; Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.

  6. Spin–orbit interaction - Wikipedia

    en.wikipedia.org/wiki/Spin–orbit_interaction

    Scientists. v. t. e. In quantum physics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron 's atomic energy levels, due to ...

  7. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld. Sommerfeld argued that if electronic orbits ...

  8. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Lorentz transformation. The following notations are used very often in special relativity: Lorentz factor. where and v is the relative velocity between two inertial frames . For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞.

  9. Aberration (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Aberration_(astronomy)

    Aberration (astronomy) A diagram showing how the apparent position of a star viewed from the Earth can change depending on the Earth's velocity. The effect is typically much smaller than illustrated. In astronomy, aberration (also referred to as astronomical aberration, stellar aberration, or velocity aberration) is a phenomenon where celestial ...

  10. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Spin (physics) Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2] : 183 –184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory .

  11. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is ...