enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    Planck's law describes the unique and characteristic spectral distribution for electromagnetic radiation in thermodynamic equilibrium, when there is no net flow of matter or energy. [2] Its physics is most easily understood by considering the radiation in a cavity with rigid opaque walls. Motion of the walls can affect the radiation.

  3. Quantum entanglement - Wikipedia

    en.wikipedia.org/wiki/Quantum_entanglement

    Quantum mechanics. Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance.

  4. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, [1] Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same ...

  5. Richard Feynman - Wikipedia

    en.wikipedia.org/wiki/Richard_Feynman

    Richard Phillips Feynman (/ ˈ f aɪ n m ə n /; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid helium, as well as his work in particle physics for which he proposed the parton model.

  6. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. [1] Therefore, even at absolute zero, atoms and molecules retain some vibrational motion.

  7. Density functional theory - Wikipedia

    en.wikipedia.org/wiki/Density_functional_theory

    Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of ...

  8. Loop quantum gravity - Wikipedia

    en.wikipedia.org/wiki/Loop_quantum_gravity

    e. Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein 's geometric formulation rather than the treatment of gravity as a mysterious ...

  9. Quantum computing - Wikipedia

    en.wikipedia.org/wiki/Quantum_computing

    Contents. Quantum computing. A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior using specialized hardware.