enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  3. Anisometropia - Wikipedia

    en.wikipedia.org/wiki/Anisometropia

    Amblyopia. Anisometropia is a condition in which a person's eyes have substantially differing refractive power. [1] Generally, a difference in power of one diopter (1D) is the threshold for diagnosis of the condition . [2] [3] Patients may have up to 3D of anisometropia before the condition becomes clinically significant due to headache, eye ...

  4. Benesi–Hildebrand method - Wikipedia

    en.wikipedia.org/wiki/Benesi–Hildebrand_method

    The equation that they developed is as follows: K − 1 = A ε HG − [ H ] 0 − [ G ] 0 + C H C G A ε HG {\displaystyle K^{-1}={\frac {A}{\varepsilon _{\ce {HG}}}}-[{\ce {H}}]_{0}-[{\ce {G}}]_{0}+{\frac {C_{\ce {H}}C_{\ce {G}}}{A}}\varepsilon _{\ce {HG}}}

  5. Vertex distance - Wikipedia

    en.wikipedia.org/wiki/Vertex_distance

    The formula for vertex correction is , where F c is the power corrected for vertex distance, F is the original lens power, and x is the change in vertex distance in meters.

  6. Esotropia - Wikipedia

    en.wikipedia.org/wiki/Esotropia

    Esotropia is a form of strabismus in which one or both eyes turn inward. The condition can be constantly present, or occur intermittently, and can give the affected individual a "cross-eyed" appearance. [1] It is the opposite of exotropia and usually involves more severe axis deviation than esophoria. Esotropia is sometimes erroneously called ...

  7. Decay correction - Wikipedia

    en.wikipedia.org/wiki/Decay_correction

    The formula for decay correcting is: [1] where is the original activity count at time zero, is the activity at time "t", "λ" is the decay constant, and "t" is the elapsed time. The decay constant is where " " is the half-life of the radioactive material of interest.

  8. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}

  9. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Calculate U 1, U 2 and L, and set initial value of λ = L. Then iteratively evaluate the following equations until λ converges: sin ⁡ σ = ( cos ⁡ U 2 sin ⁡ λ ) 2 + ( cos ⁡ U 1 sin ⁡ U 2 − sin ⁡ U 1 cos ⁡ U 2 cos ⁡ λ ) 2 {\displaystyle \sin \sigma ={\sqrt {\left(\cos U_{2}\sin \lambda \right)^{2}+\left(\cos U_{1}\sin U_{2 ...

  10. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    The mathematical derivation for the Eötvös effect for motion along the Equator explains the factor 2 in the first term of the Eötvös correction formula. What remains to be explained is the cosine factor.

  11. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis.