enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. [1] Therefore, even at absolute zero, atoms and molecules retain some vibrational motion.

  3. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.

  4. Path integral formulation - Wikipedia

    en.wikipedia.org/wiki/Path_integral_formulation

    The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

  5. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    Planck's law accurately describes black-body radiation. Shown here are a family of curves for different temperatures. The classical (black) curve diverges from observed intensity at high frequencies (short wavelengths). Formula in cgs units. In physics, Planck's law (also Planck radiation law[1]: 1305 ) describes the spectral density of ...

  6. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    The rules for spin-⁠ 1 / 2 ⁠ Dirac particles are as follows: The propagator is the inverse of the Dirac operator, the lines have arrows just as for a complex scalar field, and the diagram acquires an overall factor of −1 for each closed Fermi loop. If there are an odd number of Fermi loops, the diagram changes sign.

  7. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    In a set of curvilinear coordinates ξ = (ξ 1, ξ 2, ξ 3), the law in tensor index notation is the "Lagrangian form" [11] [12] = (+) = (˙), ˙, where F a is the a-th contravariant component of the resultant force acting on the particle, Γ a bc are the Christoffel symbols of the second kind, = is the kinetic energy of the particle, and g bc ...

  8. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. [1] [2] The principle is described by the physicist Albert Einstein's formula: =. [3]

  9. Debye model - Wikipedia

    en.wikipedia.org/wiki/Debye_model

    Reduced specific heat for KCl, TiO2, and graphite, compared with the Debye theory based on elastic measurements (solid lines). [1]In thermodynamics and solid-state physics, the Debye model is a method developed by Peter Debye in 1912 to estimate phonon contribution to the specific heat (heat capacity) in a solid. [2]