enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eötvös effect - Wikipedia

    en.wikipedia.org/wiki/Eötvös_effect

    The force of gravity and the normal force. The resultant force acts as the required centripetal force. The mathematical derivation for the Eötvös effect for motion along the Equator explains the factor 2 in the first term of the Eötvös correction formula. What remains to be explained is the cosine factor.

  3. Dioptre - Wikipedia

    en.wikipedia.org/wiki/Dioptre

    A dioptre ( British spelling) or diopter ( American spelling ), symbol dpt, is a unit of measurement with dimension of reciprocal length, equivalent to one reciprocal metre, 1 dpt = 1 m−1. It is normally used to express the optical power of a lens or curved mirror, which is a physical quantity equal to the reciprocal of the focal length ...

  4. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    In the above formula for r s ‍, if we put = ⁡ / ⁡ (Snell's law) and multiply the numerator and denominator by 1 / n 1 sin θ t ‍, we obtain r s = − sin ⁡ ( θ i − θ t ) sin ⁡ ( θ i + θ t ) . {\displaystyle r_{\text{s}}=-{\frac {\sin(\theta _{\text{i}}-\theta _{\text{t}})}{\sin(\theta _{\text{i}}+\theta _{\text{t}})}}.}

  5. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Prentice's rule, named so after the optician Charles F. Prentice, is a formula used to determine the amount of induced prism in a lens: = where: P is the amount of prism correction (in prism dioptres) c is decentration (the distance between the pupil centre and the lens's optical centre, in millimetres)

  6. Prism (optics) - Wikipedia

    en.wikipedia.org/wiki/Prism_(optics)

    Prism (optics) An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The most familiar type of optical prism is the triangular prism, which has a triangular base and rectangular sides.

  7. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    If we take the variance on both sides and use the formula for the variance of a linear combination of variables Var ⁡ ( a X + b Y ) = a 2 Var ⁡ ( X ) + b 2 Var ⁡ ( Y ) + 2 a b Cov ⁡ ( X , Y ) , {\displaystyle \operatorname {Var} (aX+bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)+2ab\operatorname {Cov} (X,Y),}

  8. Minimum deviation - Wikipedia

    en.wikipedia.org/wiki/Minimum_deviation

    Using a similar approach with the Snell's law and the prism formula for an in general thin-prism ends up in the very same result for the deviation angle. Because i , e and r are small, n ≈ i r 1 , n ≈ e r 2 {\displaystyle n\approx {\frac {i}{r_{1}}},n\approx {\frac {e}{r_{2}}}}

  9. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    Calculation. The free-air gravity anomaly is given by the equation: = (+) Here, is observed gravity, is the free-air correction, and is theoretical gravity.

  10. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    Dispersion (optics) In a dispersive prism, material dispersion (a wavelength -dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. In optics and in wave propagation in general, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency; [1 ...

  11. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    We find from the formula for radial elliptic trajectories: The time t taken for an object to fall from a height r to a height x , measured from the centers of the two bodies, is given by: t = π 2 − arcsin ⁡ ( x r ) + x r ( 1 − x r ) 2 μ r 3 / 2 {\displaystyle t={\frac {{\frac {\pi }{2}}-\arcsin {\Big (}{\sqrt {\frac {x}{r}}}{\Big ...