enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Benesi–Hildebrand method - Wikipedia

    en.wikipedia.org/wiki/Benesi–Hildebrand_method

    This can be described by the following equation: [ HG ] = [ H ] 0 K a [ G ] 1 + K a [ G ] {\displaystyle [{\ce {HG}}]={\frac {[{\ce {H}}]_{0}K_{\rm {a}}[{\ce {G}}]}{1+K_{\rm {a}}[{\ce {G}}]}}} By substituting the binding isotherm equation into the previous equation, the equilibrium constant K a can now be correlated to the change in absorbance ...

  4. Chemical graph generator - Wikipedia

    en.wikipedia.org/wiki/Chemical_graph_generator

    The generator is purely mathematical and does not involve the interpretation of any spectral data. Spectral data are used for structure scoring and substructure information. Based on the molecular formula, the generator forms bonds between pairs of atoms, and all the extensions are checked against the given constraints.

  5. Marcus theory - Wikipedia

    en.wikipedia.org/wiki/Marcus_theory

    The result for two conducting spheres in a solvent is the formula of Marcus G = ( 1 2 r 1 + 1 2 r 2 − 1 R ) ⋅ ( 1 ϵ opt − 1 ϵ s ) ⋅ ( Δ e ) 2 {\displaystyle G=\left({\frac {1}{2r_{1}}}+{\frac {1}{2r_{2}}}-{\frac {1}{R}}\right)\cdot \left({\frac {1}{\epsilon _{\text{opt}}}}-{\frac {1}{\epsilon _{\text{s}}}}\right)\cdot (\Delta e)^{2}}

  6. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    Eyring equation. The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring, Meredith Gwynne Evans and Michael Polanyi.

  7. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    Michaelis–Menten kinetics. In biochemistry, Michaelis–Menten kinetics, named after Leonor Michaelis and Maud Menten, is the simplest case of enzyme kinetics, applied to enzyme-catalysed reactions of one substrate and one product. It takes the form of a differential equation describing the reaction rate (rate of formation of product P, with ...

  8. BET theory - Wikipedia

    en.wikipedia.org/wiki/BET_theory

    The above equation is usually rearranged to yield the following equation for the ease of analysis: p / p 0 v [ 1 − ( p / p 0 ) ] = c − 1 v m c ( p p 0 ) + 1 v m c , ( 1 ) {\displaystyle {\frac {{p}/{p_{0}}}{v\left[1-\left({p}/{p_{0}}\right)\right]}}={\frac {c-1}{v_{\mathrm {m} }c}}\left({\frac {p}{p_{0}}}\right)+{\frac {1}{v_{m}c}},\qquad (1)}

  9. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis.

  10. Chemical equation - Wikipedia

    en.wikipedia.org/wiki/Chemical_equation

    A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction.

  11. Tolman length - Wikipedia

    en.wikipedia.org/wiki/Tolman_length

    The surface of tension, positioned at =, is defined as the surface for which the Young-Laplace equation holds exactly for all droplet radii: Δ p = 2 σ s R s ∂ σ s ∂ R = 0 {\displaystyle \Delta p={\frac {2\sigma _{s}}{R_{s}}}\iff {\frac {\partial \sigma _{s}}{\partial R}}=0}