enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prism correction - Wikipedia

    en.wikipedia.org/wiki/Prism_correction

    Thus a prism of 1 Δ would produce 1 cm visible displacement at 100 cm, or 1 meter. This can be represented mathematically as: = ⁡ where is the amount of prism correction in prism dioptres, and is the angle of deviation of the light.

  3. Three-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Three-point_flexural_test

    The three-point bending flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress–strain response of the material. This test is performed on a universal testing machine (tensile testing machine or tensile tester) with a three-point or four-point bend fixture.

  4. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    In the above formula for r s ‍, if we put = ⁡ / ⁡ (Snell's law) and multiply the numerator and denominator by 1 / n 1 sin θ t ‍, we obtain r s = − sin ⁡ ( θ i − θ t ) sin ⁡ ( θ i + θ t ) . {\displaystyle r_{\text{s}}=-{\frac {\sin(\theta _{\text{i}}-\theta _{\text{t}})}{\sin(\theta _{\text{i}}+\theta _{\text{t}})}}.}

  5. Anisometropia - Wikipedia

    en.wikipedia.org/wiki/Anisometropia

    Amblyopia. Anisometropia is a condition in which a person's eyes have substantially differing refractive power. [1] Generally, a difference in power of one diopter (1D) is the threshold for diagnosis of the condition . [2] [3] Patients may have up to 3D of anisometropia before the condition becomes clinically significant due to headache, eye ...

  6. Chirped pulse amplification - Wikipedia

    en.wikipedia.org/wiki/Chirped_pulse_amplification

    (p = 2 − GDD, p = 3 − TOD, p = 4 − FOD, p = 5 − FiOD, p = 6 − SiOD, p = 7 − SeOD, p = 8 − EOD, p = 9 − NOD, p = 10 − TeOD) It is possible to use prisms rather than gratings as dispersive elements, as in Figure 4.

  7. Minimum deviation - Wikipedia

    en.wikipedia.org/wiki/Minimum_deviation

    Formula. In minimum deviation, the refracted ray in the prism is parallel to its base. In other words, the light ray is symmetrical about the axis of symmetry of the prism. [1] [2] [3] Also, the angles of refractions are equal i.e. r1 = r2. The angle of incidence and angle of emergence equal each other ( i = e ).

  8. Dioptre - Wikipedia

    en.wikipedia.org/wiki/Dioptre

    A dioptre ( British spelling) or diopter ( American spelling ), symbol dpt, is a unit of measurement with dimension of reciprocal length, equivalent to one reciprocal metre, 1 dpt = 1 m−1. It is normally used to express the optical power of a lens or curved mirror, which is a physical quantity equal to the reciprocal of the focal length ...

  9. Vertex distance - Wikipedia

    en.wikipedia.org/wiki/Vertex_distance

    The formula for vertex correction is = (), where F c is the power corrected for vertex distance, F is the original lens power, and x is the change in vertex distance in meters.

  10. Brewster's angle - Wikipedia

    en.wikipedia.org/wiki/Brewster's_angle

    one can calculate the incident angle θ 1 = θ B at which no light is reflected: n 1 sin ⁡ θ B = n 2 sin ⁡ ( 90 ∘ − θ B ) = n 2 cos ⁡ θ B . {\displaystyle n_{1}\sin \theta _{\mathrm {B} }=n_{2}\sin(90^{\circ }-\theta _{\mathrm {B} })=n_{2}\cos \theta _{\mathrm {B} }.}

  11. Free-air gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Free-air_gravity_anomaly

    The free air correction is calculated from Newton's Law, as a rate of change of gravity with distance: g = G M R 2 d g d R = − 2 G M R 3 = − 2 g R {\displaystyle {\begin{aligned}g&={\frac {GM}{R^{2}}}\\{\frac {dg}{dR}}&=-{\frac {2GM}{R^{3}}}=-{\frac {2g}{R}}\end{aligned}}}